Đặt \(x^2=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2m=f\left(t\right)=t^2-2t+3\)
Đồ thị hàm số:
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(2< 2m\le3\Leftrightarrow1< m\le\dfrac{3}{2}\)
Đặt \(x^2=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2m=f\left(t\right)=t^2-2t+3\)
Đồ thị hàm số:
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(2< 2m\le3\Leftrightarrow1< m\le\dfrac{3}{2}\)
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1. Tìm m để pt \(\left(x^2+2x\right)^2-\left(x^2+2x\right)-m=0\)
a .có 4 nghiệm pb
b. vô ng
c. có nghiệm duy nhất
d. có nghiệm
e. có nghiệm kép
2. Biết pt: \(x+\sqrt{2x+11}=0\) có nghiệm \(x=a+b\sqrt{3}\). Tính ab
HELP ME
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
Giai pt : a) \(x^6+2003x^3-2005=0\)
b) \(\sqrt{2}x^4-2\left(\sqrt{2}+\sqrt{3}\right)x^2+\sqrt{12}=0\)
c) Cho pt \(x^4+x^2+m=0\). Tìm m để
- Phương trình có 3 nghiệm pb
- pt có 4 nghiệm pb
a) Tìm m để pt \(\sqrt{2x^2-2x+m}=x+1\) có nghiệm
b) Tìm m để pt \(\sqrt{2x^3+mx^2+2x-m}=x+1\) có 3 nghiệm phân biệt
tìm m để pt \(\left(x^2+\dfrac{1}{x^2}\right)-2m\left(x+\dfrac{1}{x}\right)+1=0\) có nghiệm
1. Số k nhỏ nhất sao cho pt \(2x\left(kx-4\right)-x^2+6=0\) vô nghiệm
2. Pt : \(ax^2+bx+c=0\)
a. Có nghiệm khi nào
b. Vô nghiệm khi nào
c. Có nghiệm duy nhất khi nào
d. Có 2 nghiệm pb , có 2 ng khi nào
Tìm m để pt \(-x^2+2x+4\sqrt{\left(3-x\right)\left(1+x\right)}=m-2\) có nghiệm