Tìm GTLN của:
\(A=\dfrac{-3\sqrt{x}}{\sqrt{x}+1}\)
\(Cho:A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(1,\)Rút gọn biểu thức A
\(2,\)Tìm GTLN của A
\(3,\)Tìm \(x\in Q\) để A nhận giá trị nguyên
1:
\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
3: A nguyên
=>-5căn x-15+17 chia hết cho căn x+3
=>căn x+3 thuộc Ư(17)
=>căn x+3=17
=>x=196
Cho: \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a, Rút gọn P.
b, Tìm xϵZ để PϵZ.
c, Tìm GTLN của P.
a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)
Cho: \(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, Rút gọn P
b, Tìm GTLN của P
a) Rút gọn P
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)\(-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)\(=\dfrac{\left(-5\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) Tìm GTLN
\(P=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{17-5\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=\dfrac{17}{\sqrt{x}+3}-5\)
Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow P=\dfrac{17}{\sqrt{x}+3}-5\le\dfrac{17}{3}-5=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(P_{max}=\dfrac{2}{3}\) khi \(x=0\)
Bài 1:
A=\(\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
a) Tìm tập xác định của biểu thức A
b) Rút gọn biểu thức A
c) Chứng minh rằng A>0 với mọi x≠1
d) Tìm x để A đạt GTLN, tìm GTLN đó
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)
\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{2}{x+\sqrt{x}+1}\)
c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
\(A=\dfrac{3x}{x\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\) với \(x\ge0\)
a) Rút gọn A
b) Tìm GTLN của A
a) \(A=\dfrac{3x}{x\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\)
\(=\dfrac{3x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\)
\(=\dfrac{3x-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
Cho biểu thức:
\(Q=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}+\dfrac{\sqrt{x}+3}{\sqrt{x}-3}-\dfrac{14}{9-x}\right).\dfrac{\sqrt{x}-3}{x}\)
a) Rút gọn Q.
b) Tìm GTLN của Q.
\(a,Q=\dfrac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}\left(x>0;x\ne9\right)\\ Q=\dfrac{2x+32}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}=\dfrac{2x+32}{x\left(\sqrt{x}+3\right)}\)
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)