Những câu hỏi liên quan
TP
Xem chi tiết
BX
Xem chi tiết
NT
21 tháng 3 2023 lúc 18:22

loading...  loading...  

Bình luận (1)
TH
Xem chi tiết
TA
Xem chi tiết
HH
25 tháng 12 2020 lúc 22:46

undefinedXài cái này gõ bài đi bạn, thề như này hiểu chết liền á :(

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 9 2017 lúc 15:21

Đáp án A

Vậy n = 10.

Ta có số hạng tổng quát trong khai triển trên là

a là hệ số của số hạng không chứa x trong khai triển nên ta cho 

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 2 2019 lúc 7:02

Bình luận (0)
HT
Xem chi tiết
NL
5 tháng 11 2019 lúc 6:49

\(\left(x+2.x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^kx^k.2^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^{6-k}x^{3k-12}\)

Số hạng chứa \(x^3\Rightarrow3k-12=3\Rightarrow k=5\)

\(\Rightarrow\) Hệ số: \(C_6^5.2^1=12\)

\(\left(3-2x\right)^{15}=\sum\limits^{15}_{k=0}C_{15}^k3^k.\left(-2\right)^{15-k}.x^{15-k}\)

Số hạng chứa \(x^7\Rightarrow15-k=7\Rightarrow k=8\)

\(\Rightarrow\) Hệ số: \(C_{15}^8.3^8.\left(-2\right)^7\)

\(\left(2x-x^{-2}\right)^6=\sum\limits^6_{k=0}C_6^k2^k.x^k.\left(-1\right)^{6-k}.\left(x^{-2}\right)^{6-k}=\sum\limits^6_{k=0}C_6^k2^k\left(-1\right)^{6-k}.x^{3k-12}\)

Số hạng ko chứa x \(\Rightarrow3k-12=0\Rightarrow k=4\)

Hệ số: \(C_6^42^4\left(-1\right)^2=240\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
16 tháng 8 2017 lúc 7:03

Bình luận (0)
MA
Xem chi tiết
NL
13 tháng 11 2021 lúc 15:47

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

Bình luận (0)