Những câu hỏi liên quan
KK
Xem chi tiết
BT
Xem chi tiết
VM
21 tháng 10 2019 lúc 9:10

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
LN
17 tháng 12 2018 lúc 22:20

Bài này dễ mà bạn

Bình luận (0)
LH
17 tháng 12 2018 lúc 22:22

dễ thì bn giải hộ mk đi,nói đc lm đc nhỉ

Bình luận (0)
TD
Xem chi tiết
PP
19 tháng 7 2020 lúc 9:54

cac cap tam giac co dien h bang nhau la AOB va BOC. Vi co cap song song voi nhau va cat toi diem O

Bình luận (0)
 Khách vãng lai đã xóa
LK
19 tháng 7 2020 lúc 11:39

bạn Phạm Thị Thúy Phượng gửi nhầm bài rồi 

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
19 tháng 7 2020 lúc 16:56

\(a\left(2a-1\right)+b\left(2b-1\right)=2ab\)

\(\Leftrightarrow2a^2+2b^2-a-b=2ab\le\frac{\left(a+b\right)^2}{2}\)

Mà \(2a^2+2b^2\ge\left(a+b\right)^2\)

Đặt \(a+b=t\Rightarrow t^2-t\le\frac{t^2}{2}\Leftrightarrow t^2-t\le0\Leftrightarrow t\le1\Rightarrow a+b\le1\)

\(F=\frac{a^3+2020}{b}+\frac{b^3+2020}{a}=\frac{a^3}{b}+\frac{b^3}{a}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{a^4+b^4}{ab}+2020\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{\left(a+b\right)^4}{2\left(a+b\right)^2}+\frac{8080}{a+b}\)

\(=\frac{\left(a+b\right)^2}{2}+\frac{8080}{a+b}=\frac{\left(a+b\right)^2}{2}+\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+b\right)}+\frac{8079}{a+b}\)

\(\ge3\sqrt[3]{\frac{\left(a+b\right)^2}{8\left(a+b\right)^2}}+\frac{8079}{1}=\)

đoạn cuối bí nhá 

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết
H24
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Bình luận (0)
HC
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Bình luận (0)
AM
Xem chi tiết
TH
Xem chi tiết
NT
2 tháng 7 2023 lúc 23:46

a^2+9ab-22b^2=0

=>a^2+11ab-2ab-2b^2=0

=>(a+11b)(a-2b)=0

=>a=2b hoặc a=-11b

TH1: a=2b

\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)

TH2: a=-11b

\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)

Bình luận (0)
TY
Xem chi tiết
KS
24 tháng 3 2020 lúc 19:58

\(2x^2+y^2+9=6x+2xy\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\x-y=0\end{cases}}\Leftrightarrow x=y=3\)

\(\Rightarrow A=x^{2019}.y^{2020}-x^{2020}.y^{2019}+\frac{1}{9xy}=\frac{1}{27}\)

Bình luận (0)
 Khách vãng lai đã xóa
PP
Xem chi tiết
H24
6 tháng 2 2020 lúc 18:29

a)

(x-2)(y+1)=7

=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}

Ta có bảng:

x-2-1-717
y+1-7-171
x1-539
y-8-260

Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)

b)

3x+8 chia hết cho x-1

<=> 3x-3+11 chia hết cho x-1

<=> 3(x-1)+11 chia hết cho x-1

<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1

=> x-1 \(\in\)Ư(11)={-1,-11,1,11}

<=>x\(\in\){0,-10,2,12}

Bình luận (0)
 Khách vãng lai đã xóa