Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DH
Xem chi tiết
NL
19 tháng 12 2020 lúc 20:34

\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)

\(A_{min}=-1\) khi \(2x+y=0\)

Bình luận (0)
NT
Xem chi tiết
AH
7 tháng 9 2024 lúc 20:35

1.

$D=x^3+y^3+2xy=(x+y)^3-3xy(x+y)+2xy=2^3-3xy.2+2xy$

$=8-6xy+2xy=8-4xy=8-4x(2-x)=8-8x+4x^2=(4x^2-8x+4)+4$

$=(2x-2)^2+4\geq 4$

Vậy $D_{\min}=4$. Giá trị này đạt tại $2x-2=0\Leftrightarrow x=1$

$y=2-x=2-1=1$

Bình luận (0)
AH
7 tháng 9 2024 lúc 20:38

2.

$A=(2x+1)^2-(3x-2)^2+x-11=4x^2+4x+1-(9x^2-12x+4)+x-11$

$=4x^2+4x+1-9x^2+12x-4+x-11$

$=-5x^2+17x-14$

$-A=5x^2-17x+14=5(x^2-3,4x+1,7^2)-0,45=5(x-1,7)^2-0,45\geq -0,45$

$\Rightarrow A\leq 0,45$

Vâ $A_{\max}=0,45$

Giá trị này đạt tại $x-1,7=0\Leftrightarrow x=1,7$

Bình luận (0)
DL
Xem chi tiết
PQ
Xem chi tiết
YN
23 tháng 11 2021 lúc 12:34

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
TX
Xem chi tiết
HN
18 tháng 7 2016 lúc 12:12

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

Bình luận (0)
HN
18 tháng 7 2016 lúc 12:05

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

Bình luận (0)
HN
18 tháng 7 2016 lúc 12:09

24. Tương tự câu 23 , ta được \(x=y\) hoặc \(y=-3x\)(loại trường hơp này vì mẫu thức phải khác 0)

 Vậy với x = y được \(A=-\frac{1}{2}\)

Bình luận (0)
UI
Xem chi tiết
LH
20 tháng 5 2021 lúc 13:40

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Rightarrow2\ge3x^2+2y^2+2z^2+y^2+z^2\) 

\(\Leftrightarrow2\ge3\left(x^2+y^2+z^2\right)\)

Có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\le2\)

\(\Rightarrow\)\(A^2\le2\) \(\Leftrightarrow A\in\left[-\sqrt{2};\sqrt{2}\right]\)

minA=-1\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=-\sqrt{2}\\x=y=z\end{matrix}\right.\)  \(\Rightarrow x=y=z=-\dfrac{\sqrt{2}}{3}\)

maxA=1\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=\sqrt{2}\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\dfrac{\sqrt{2}}{3}\)

 

Bình luận (1)
NN
Xem chi tiết
AN
23 tháng 11 2016 lúc 23:43

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

Bình luận (0)
AN
23 tháng 11 2016 lúc 23:46

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

Bình luận (0)
ND
12 tháng 12 2017 lúc 21:17

\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)

\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)

thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)

thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 4 2022 lúc 16:41

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)

\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)

Dấu "=" xảy ra khi \(x=y\)

\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)

\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)

\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)

\(B_{min}=1\) khi \(x=y\)

Bình luận (0)
VT
Xem chi tiết