Tính các nguyên hàm sau đây: ∫ x + ln x x 2 d x
Tính nguyên hàm ∫ ln ( ln x ) x d x
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
a) F(x) = 1 - cos x 2 + π 4
d) K(x) = 2 1 - 1 1 + tan x 2
Cho F(x) là một nguyên hàm của hàm số f(x)=x ln x Tính F ' ' x
A. F ' ' x = 1 − ln x
B. F ' ' x = 1 x
C. F ' ' x = 1 + ln x
D. F ' ' x = x + ln x
Đáp án C
Ta có F ' ' x = f ' x = 1 + ln x
Họ các nguyên hàm của hàm số f(x) = (2x + 1) ln x là
A. .
B. .
C. .
D. .
\(\int(x)ln(x+1)dx\)
Tính nguyên hàm
\(\int xln\left(x+1\right)dx\)
\(\left\{{}\begin{matrix}u=ln\left(x+1\right)\\dv=xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{1}{x+1}dx\\v=\dfrac{x^2}{2}\end{matrix}\right.\)
\(\Rightarrow\int xln\left(x+1\right)dx=\dfrac{x^2}{2}.ln\left(x+1\right)-\int\dfrac{x^2}{2}.\dfrac{1}{x+1}dx=\dfrac{x^2}{2}.ln\left(x+1\right)-\dfrac{1}{2}\int\dfrac{x^2}{x+1}dx\)
Xet \(\int\dfrac{x^2}{x+1}dx=\int\dfrac{\left(x+1\right)\left(x-1\right)}{x+1}dx+\int\dfrac{1}{x+1}dx\)
\(=\int\left(x-1\right)dx+\int\dfrac{1}{x+1}dx\)
\(=\dfrac{x^2}{2}-x+ln\left(x+1\right)\)
\(\Rightarrow\int xln\left(x+1\right)dx=\dfrac{x^2}{2}.ln\left(x+1\right)-\dfrac{1}{2}\left(\dfrac{x^2}{2}-x+ln\left(x+1\right)\right)\)
Tính đạo hàm của các hàm số sau:
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
g: \(y=ln\left(x^2+x+1\right)\)
=>\(y'=\dfrac{\left(x^2+x+1\right)'}{x^2+x+1}=\dfrac{2x+1}{x^2+x+1}\)
l: \(y=\dfrac{lnx}{x+1}\)
=>\(y'=\dfrac{\left(lnx\right)'\cdot\left(x+1\right)-\left(x+1\right)'\left(lnx\right)}{\left(x+1\right)^2}\)
=>\(y'=\dfrac{\dfrac{1}{x}\left(x+1\right)-lnx}{\left(x+1\right)^2}\)
\(\Leftrightarrow y'=\dfrac{\dfrac{\left(x+1\right)}{x}-lnx}{\left(x+1\right)^2}\)
Tính các nguyên hàm sau đây: ∫ x + e x e 2 x d x
e 2 x 12 4 e x + 6 x - 3 + C
Hướng dẫn: Đặt u = x + e x , dv = e 2 x dx
Tính các nguyên hàm sau đây: ∫ x + sin x d x cos 2 x
xtanx + ln cosx + 1 cosx + C
Hướng dẫn: Đặt u = x + sinx, dv = d(tanx)
Tính các nguyên hàm sau đây: ∫ x + sin 2 x sin x d x
sin x - x + 1 cos x + 1 3 cos 3 x + C
Hướng dẫn: Đặt u = x + sin 2 x , dv = sinxdx