tìm n để 28+211+2n là số chính phương
Tìm tất cả các số tự nhiên n sao cho số : 28+211+2n là số chính phương
Câu1:Tìm n để 2^8 + 2^11 + 2^n là số chính phương
Câu 2: Cho S= 1x2x3+2x3x4+......+49x50x51.Tìm n để 4S+n là số chính phương
Câu 3:Tìm n để n^2 + 2n + 12 là số chính phương
1) CMR: A= 999...9800...0 1 là số chính phương
n chữ số 9 n c/số 0
2) Tìm n thuộc N để n^2+5 là số chính phương
3) Tìm n thuộc N* để n^2-2n+8 là số chính phương
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
tìm n để n^2+2n+12 là số chính phương
Tìm số tự nhiên n để n^2 + 2n + 6 là 1 số chính phương
Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)
\(n^2+2n+6\) là số chính phương
Đặt \(n^2+2n+6=k^2\left(k\in N\right)\)
\(\Leftrightarrow4n^2+8n+24=4k^2\)
\(\Leftrightarrow4n^2+8n+1+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2+23=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2n+1\right)^2=23\)
\(\Leftrightarrow\left(2k+2n+1\right)\left(2k-2n-1\right)=23\)
mà \(2k+2n+1>2k-2n-1,\forall a;k\in N\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n+1=23\\2k-2n-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2n=22\\2k-2n=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k+n=11\\k-n=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}k=6\\n=5\end{matrix}\right.\)
Vậy \(n=5\) thỏa mãn đề bài
Cho K = m^2n^2 − 4m − 2n, ∀m, n ∈ N∗
.
a) Khi n = 2, tìm m để K là số chính phương.
b) Khi n > 5, chứng minh rằng K không thể là số chính phương.
Tìm n để n2 - 2n + 2020 là một số chính phương.
Lời giải:
Đặt $n^2-2n+2020=a^2$ với $a\in\mathbb{N}^*$
$\Leftrightarrow (n-1)^2+2019=a^2$
$\Leftrightarrow 2019=(a-n+1)(a+n-1)$
Với $a\in\mathbb{N}^*, n\in\mathbb{N}$ thì $a+n-1>0$
$\Rightarrow a-n+1>0$. Vậy $a+n-1> a-n+1>0$
Mà tích của chúng bằng $2019$ nên ta có các TH sau:
TH1: $a+n-1=2019; a-n+1=1$
$\Rightarrow n=1010$ (tm)
TH2: $a+n-1=673, a-n+1=3$
$\Rightarrow n=336$