Giá trị của
A = 1 1 ! .2018 ! + 1 2 ! .2017 ! + 1 3 ! .2016 ! + ... + 1 1008 ! .1011 ! + 1 1009 ! .1010 ! bằng
A. 2 2017 − 1 2018 ! .
B. 2 2017 2018 ! .
C. 2 2017 2019 ! .
D. 2 2018 − 1 2019 ! .
A=2017-(x+1). Tìm giá trị lớn nhất của A
B=giá trị tuyệt đối của x+2017cộng với 2018
Tìm giá trị nhỏ nhất của B
C=giá trị tuyệt đối của x+2017 cộng với giá trị tuyệt đối của y+2018 cộng với 2019
Tìm giá trị lớn nhất của C
Cho ba số thực a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c =1. Tính giá trị của biểu thức a^2018+b^2018+c^2018
Tìm GTNN của A = giá trị tuỵt đối x+1+giá trị tuỵet đối x+2018
Tìm giá trị lớn nhất của A biết: A = 2018 - 2(x2+1)2018
\(A=2018+2\left(x^2+1\right)^{2018}\)
Để A lớn nhất => 2(x2+1)2018 nhỏ nhất \(\left(1\right)\)
Ta thấy:
\(2\left(x^2+1\right)^{2018}\ge0\)\(\left(2\right)\)
Từ (1); (2)\(\Rightarrow\left(x^2+1\right)^{2018}=0\) \(\Rightarrow x^2+1=0\)
\(\Rightarrow x^2=-1\)(LOẠI)
Nếu (x2 + 1)2018 = 1
\(\Rightarrow\orbr{\begin{cases}x^2+1=1\\x^2+1=-1\left(L\right)\end{cases}}\)
\(\Leftrightarrow x=0\)(TM)
\(\Rightarrow A=2018-2.1=2016\)
Vậy GTLN của A là 2016 tại x = 0
Tính giá trị của biểu thức: \(A=\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)
Đặt \(2017=a\)
\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)
Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)
\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)
Bài 1 :
a) Tìm giá trị nhỏ nhất của : \(M=2018+|1-2x|\)
b) Tìm giá trị lớn nhất của \(N=2018-(1-2x)^{2018}\)
c) Tìm giá trị nhỏ nhất của \(P=7+|x-1|+|2-x|\)
Các bạn giải giúp mk vs nhé , mai mk nộp rồi , nhớ ghi rõ cách giải nhé
Thanks!
a) M=2018+|1-2x|
nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018
dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2
vậy giá trị nhỏ nhất của M=2018<=>x=1/2
b)N=2018-(1-2x)^2018
nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018
dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2
vậy giá trị lớn nhất của N=2018<=>x=1/2
c)P=7+|x-1|+|2-x|
áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có
P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8
dấu "=" xảy ra <=>(x-1). (2-x)=0
<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2
vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2
Với \(x-2018>0\Leftrightarrow x>2018\):
\(A=x-2018+x-1=2x-2019>2.2018-2019=2017\)
Với \(x-2018\le0\Leftrightarrow x\le2018\):
\(A=2018-x+x-1=2017\)
Vậy \(minA=2017\)đạt tại \(x\le2018\).
min A=2017 nha bạn
Chuyển các hỗn số thành phân số rồi tính giá trị biểu thức sau:
A= \(1\dfrac{1}{2019}\)× \(1\dfrac{1}{2018}\)×\(1\dfrac{1}{2017}\)×...×\(1\dfrac{1}{2}\)
Giá trị biểu thức của A là.......
2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010
\(A=1\dfrac{1}{2019}\times1\dfrac{1}{2018}\times1\dfrac{1}{2017}\times...\times1\dfrac{1}{2}\)
\(=\dfrac{2020}{2019}\times\dfrac{2019}{2018}\times\dfrac{2018}{2017}\times...\times\dfrac{3}{2}\)
\(=\dfrac{2020}{2}\)
\(=1010\)
Ch0 A= 1/2 + 1/ 2^2 + 1/2^3 + .......+ 1/2^2017 + 1/2^2018. Chứng t0 giá trị của biểu thức 2^2018 x A +1 ) là m0t lũy thừa v0i c0 s0 tự nhiên
với giá trị nào của x,y yhif biểu thức A=|x-y|+|x+1|+2018 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất đó
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)