Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 3 2017 lúc 2:17

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 12 2018 lúc 10:29

Giải bài tập Đại số 11 | Để học tốt Toán 11

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2017 lúc 9:31

Giải bài tập Đại số 11 | Để học tốt Toán 11

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2019 lúc 13:20

a. Năm số hạng đầu của dãy số

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. Dự đoán công thức số hạng tổng quát của dãy số:

un =√(n+8) (1)

Rõ ràng (1) đúng với n = 1

Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1

⇒ (1) đúng với mọi n ∈ N*.

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:21

a) \({u_1} = 1\)

\( \Rightarrow {u_2} = 2.1 = 2\)

\( \Rightarrow {u_3} = 3.2 = 6\)

\( \Rightarrow {u_4} = 4.6 = 24\)

\( \Rightarrow {u_5} = 5.24 = 120\)

b)

Ta có:

\({u_2} = 2 = 2.1 \)

\({u_3} = 6= 1.2.3 \)

\({u_4} = 24 = 1.2.3.4\)

\({u_5} = 120 = 1.2.3.4.5\)

\( \Rightarrow {u_n} = 1.2.3....n = n!\).

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 8 2023 lúc 22:06

u1=-1

u2=-1+3=2

u3=2+3=5

u4=5+3=8

u5=8+3=11

Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 6 2017 lúc 6:44

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 21:01

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 20:55

a) Năm số hạng đầu của dãy số là: \(u_1=1^2=1;u_2=2^2=4;u_3=3^2=9;u_4=4^2=16;u_5=5^2=25\).

Số hạng tổng quát của dãy số un là \(u_n=n^2\) với n ∈ ℕ.

b) Dạng khai triển của dãy số \(u_1=1,u_2=4,u_3=9,u_4=16,...u_n=n^2\) ...

Bình luận (0)