Những câu hỏi liên quan
TU
Xem chi tiết
XO
29 tháng 1 2022 lúc 10:46

Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)

\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)

"=" xảy ra khi y = 2 ; x = 1 ; z = 1

Bình luận (0)
TU
29 tháng 1 2022 lúc 10:37

Giúp mình câu này với ah.

 

Bình luận (0)
TH
29 tháng 1 2022 lúc 11:00

Ta có x+y+z=4

=>y=4-x-z

Ta có :x,y,z>0

=>\(x^2>0,z^2>0\)

=>\(x^2z>0,z^2x>0\)

Áp dụng bất đẳng thức cô si với hai số dương \(x^2z\) và z ta có

      \(x^2z+z\)>=2\(\sqrt{x^2z.z}\)

<=>\(x^2z+z>=2xz\)

CMTT:\(z^2x+x>=2xz\)

=>\(x^2z+z+z^2x+x>=4xz\)

=>\(x+z>=4xz-x^2z-z^2x\)

=>\(x+z>=xz\left(4-x-z\right)\)

Mà y=4-x-z(cmt)

=>\(x+z>=xyz\)

=>\(\dfrac{x+z}{xyz}>=1\)

hay \(P>=1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x^2z=z\\z^2x=x\\x+y+z=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x^2=1\\z^2=1\\x+y+z=4\end{matrix}\right.\)  

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\1+y+1=4\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}x=1\\z=1\\y=2\end{matrix}\right.\)

Vậy tại x=1, y=2,z=1 thì P có giá trị nhỏ nhất là 1

Bình luận (0)
BB
Xem chi tiết
NV
Xem chi tiết
AH
14 tháng 7 2023 lúc 22:24

Lời giải:
Áp dụng BĐT Cô-si:

$x^3+1+1\geq 3x$

$y^3+1+1\geq 3y$

$z^3+1+1\geq 3z$

$\Rightarrow x^3+y^3+z^3+6\geq 3(x+y+z)\geq 3.3=9$

$\Rightarrow A=x^3+y^3+z^3\geq 3$ 

Vậy $A_{\min}=3$. Giá trị này đạt tại $x=y=z=1$

Bình luận (0)
NV
Xem chi tiết
NL
7 tháng 5 2023 lúc 18:39

\(A=\left(x^3+1+1\right)+\left(y^3+1+1\right)+\left(z^3+1+1\right)-6\)

\(A\ge3\sqrt[3]{x^3}+3\sqrt[3]{y^3}+3\sqrt[3]{z^3}-6=3\left(x+y+z\right)-6\ge3.3-6=3\)

\(A_{min}=3\) khi \(x=y=z=1\)

Bình luận (0)
NQ
Xem chi tiết
LP
2 tháng 4 2018 lúc 14:43

Áp dụng BĐT Cauchy, ta có:

4A = (x + y + z + t)2(x + y + z)(x + y)/xyzt

>= 4(x + y + z)t(x + y + z)(x + y)/xyzt

>= 4(x + y + z)2(x + y)/xyz >= 4 . 4(x + y)z(x + y)/xyz

>= 16(x + y)2/xy >= 16 . 4xy/xy >= 64

=> A >= 16

Bình luận (0)
KT
Xem chi tiết
HK
23 tháng 6 2019 lúc 19:14

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
H24
17 tháng 4 2021 lúc 21:33

M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)

=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16

Min M= 16 khi  z=1/2 và  x=y =1/4

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
Xem chi tiết
PQ
16 tháng 6 2020 lúc 17:26

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(xy+yz+zx\right)^2}{6x^2y^2z^2}\le\frac{\left(x^2+y^2+z^2\right)^2}{6x^2y^2z^2}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
PQ
16 tháng 6 2020 lúc 17:50

mình nhầm :) làm lại nhé

\(P\le\frac{1}{2}\left(\Sigma\frac{1}{\sqrt{xy}}\right)\le\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{6xyz}\le\frac{xy+yz+zx}{2xyz}\le\frac{x^2+y^2+z^2}{2xyz}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa