cho y=ax^2+bx+c biết đồ thị của hàm số đó đi qua ba điểm A(2;4) B(−2;4) C(0;0).
cho y=ax^2+bx+c biết đồ thị của hàm số đó đi qua ba điểm A(−1;0) , B(3;−16) và C(0;−1).
Tìm các hệ số a, b, ca,b,c của hàm số y=ax^2 + bx +cy=ax 2 +bx+c biết đồ thị của hàm số đó đi qua ba điểm A(1;-1)A(1;−1) , B(-2;-10)B(−2;−10) và C(0;-2)C(0;−2).
Cho hàm số y=\(ax^2+bx+c\) (a≠0) có đồ thị (P).Biết đồ thị của hàm số có đỉnh I(1;1) và đi qua điểm A(2;3). Tính tổng S=a2+b2+c2
A.3 B.4 C.29 D.1
(P) có đỉnh I(1;1) và đi qua A(2;3) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=1\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2a\\b^2-4ac=-4a\\4a+2b+c=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-2a\\4a+2\cdot\left(-2a\right)+c=3\\b^2-4ac=-4a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\b=-2a\\4a^2-12a+4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\4a^2-8a=0\\b=-2a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}c=3\\4a\left(a-2\right)=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\\left[{}\begin{matrix}a=0\left(loại\right)\\a=2\left(nhận\right)\end{matrix}\right.\\b=-2\cdot2=-4\end{matrix}\right.\)
=>c=3;a=2;b=-4
=>\(S=3^2+2^2+\left(-4\right)^2=25+4=29\)
=>Chọn C
cho hàm số y = ax^2 + bx + c(a khác 0). tìm a, b, c biết hàm số đó có gtln = 5 khi x = -2 và đồ thị đi qua M(1;-1)
\(y=ax^2+bx+c\left(d\right)\)
Do y có gtln là 5 khi x=-2
\(\Rightarrow\left\{{}\begin{matrix}5=a\left(-2\right)^2+b\left(-2\right)+c\\-\dfrac{b}{2a}=-2\\a< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=5\\4a-b=0\end{matrix}\right.\)
Có \(M\in\left(d\right)\Rightarrow a+b+c=-1\)
Có hệ \(\left\{{}\begin{matrix}4a-2b+c=5\\4a+b=0\\a+b+c=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{-2}{3}\\b=-\dfrac{8}{3}\\c=\dfrac{7}{3}\end{matrix}\right.\)(tm)
Vậy...
câu 1: xác định hàm số bậc hai y = \(2x^2\)+ bx +c , biết rằng đồ thị của nó có đỉnh là I ( -1 ; 0)
câu 2 : xác định phương trình (P) y=\(ax^2\)+ bx+c đi qua ba điểm A ( 0:-1) B ( 1:-1) C ( -1:1)?
Câu 1:
Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)
Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix}
-1=a.0^2+b.0+c\\
-1=a.1^2+b.1+c\\
1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
c=-1\\
a+b+c=-1\\
a-b+c=1\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)
B1: Cho hàm số \(y=f\left(x\right)=x^2+ax-a+5\).Tìm a biết f(-2)=2004
B2: Cho hàm số \(y=f\left(x\right)=ax+b.\)Tìm và b biết f(1)=2 và f(2)=3
B3: Cho hàm số \(y=f\left(x\right)=ax^2+bx+c.\)Tìm a,b,c biết f(o)=1,f(1)=2,f(2)=3
B4:Cho hàm số y=x+1
a,tìm tọa độ điểm A, biết A là giao điểm đồ thị với trục tung
b, Tìm tọa độ điểm B biết B là giao điểm của đồ thị với trục hoành
B5: tìm tọa độ giao điểm của đồ thị hàm số y=2x và y=3x-1
B6: Cho hàm số y=ax^2+bx+c tìm a,b,c biết đồ thị hàm số đi qua điểm A(0,1), B(1,2), C(-1,0)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Đồ thị hàm số y=ax đi qua điểm A (4;2)
a) Xác định hệ số a và vẽ đồ thị của hàm số đó.
b) Cho B (-2;-1); C (5;3). Không cần biển diễn C trên mặt phẳng tọa độ, hãy cho biết ba điểm A, B, C có thẳng hảng không?
a) Đồ thị hàm số y = ax đi qua điểm A( 4 ; 2 )
=> A thuộc đồ thị hàm số
=> xA = 4 ; yA = 2
Thế vào đồ thị hàm số ta được :
2 = a . 4 <=> a = 1/2
=> y = 1/2x ( * )
b) Muốn biết ba điểm A, B, C có thẳng hàng hay không , ta xét chúng có cùng đi qua ( * ) hay không
* Xét B( -2 ; -1 )
=> xB = -2 ; yB = -1
Thế vào ( * ) ta được : -1 = 1/2 . ( -2 ) [ đúng ]
Vậy B( -2 ; -1 ) thuộc ( * )
* Xét C( 5 ; 3 )
=> xC = 5 ; yC = 3
Thế vào ( * ) ta được : 3 = 1/2 . 5 [ sai ]
Vậy C(5 ; 3) không thuộc ( * )
=> 3 điểm A, B, C không thẳng hàng
Cho hàm số y = ax đi qua điểm A(4;2) a. Xác định hệ số a và vẽ đồ thị của hàm số đó b. Cho B(-2; -1), C(5;3). Ba điểm A, B, C có thẳng hàng không?
a: Thay x=4 và y=2 vào y=ax, ta được:
4a=2
hay a=1/2