Những câu hỏi liên quan
DP
Xem chi tiết
BD
21 tháng 11 2023 lúc 0:31

Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.

Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.

Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.

Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).

Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).

Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.

Vậy, đáp án là B. m = 2.

Bình luận (0)
MN
Xem chi tiết
NL
10 tháng 1 2021 lúc 23:05

Tiếp tuyến có hệ số góc bằng 1

\(y'=\dfrac{m\left(3m+1\right)-\left(-m^2+m\right)}{\left(x+m\right)^2}=\dfrac{4m^2}{\left(x+m\right)^2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\dfrac{4m^2}{\left(x+m\right)^2}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}2m=x+m\\-2m=x+m\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m}{3m+1}\\\left[{}\begin{matrix}x=m\\x=-3m\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\dfrac{m^2-m}{3m+1}\\-3m=\dfrac{m^2-m}{3m+1}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 8 2018 lúc 9:24

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 2 2019 lúc 12:53

Ta có y’=3x2-6x-m

Để đồ thị hàm số đã cho có hai điểm cực trị khi  phương trình y’=0  có hai nghiệm phân biệt  ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3

Ta có 

đường thẳng đi qua hai điểm cực trị  Avà  B là 

Đường thẳng d; x+4y-5=0 có một VTPT là  n d → = ( 1 ; 4 ) .

Đường thẳng  có một VTCP là  n ∆ → = ( 2 m 3 + 2 ;   1 )

Ycbt suy ra:

Suy ra 

thỏa mãn

Chọn A.

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 7 2018 lúc 2:20

Ta có 

Đề đồ thị hàm số có hai điểm cực trị khi m khác 0.

Khi đó tọa độ hai điểm cực trị là A( 0 ; 4m2- 2)  B( 2m; 4m2- 4m3-2).

Do I( 1; 0)  là trung điểm của AB  nên

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 10 2019 lúc 9:21

Ta có 

Để đồ thị hàm số có hai điểm cực trị khi m khác 0.

Khi đó gọi A( 0 ; -3m-1)  và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.

Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và  A B → = ( 2 m ; 4 m 3 ) = 2 m ( 1 ; 2 m 2 )

Đường thẳng d có một vectơ chỉ phương là  u → = ( 8 ; - 1 ) .

Ycbt 

Chọn D.

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 6 2019 lúc 4:59

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2018 lúc 10:40

Đáp án B.

Hàm số y = f x + m  là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m   = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x  thành đồ thị hàm số  y = f x + m   :

* Nếu m > 0:

- Bước 1: Tịnh tiến đồ thị hàm số y = f x  sang trái m đơn vị.

- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.

- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.

* Nếu m=0  :

- Bước 1: Tịnh tiến đồ thị hàm số y = f x  sang phải m đơn vị.

- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.

- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.

Quan sát ta thấy đồ thị hàm số y = f x  có 2 điểm cực trị.

Để đồ thị hàm số y = x + m  có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m  phải có 2 điểm cực trị => Điểm cực trị  của đồ thị hàm số y = f x  phải được tịnh tiến sang phải  O y ⇒ m < − 1   .

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 11 2019 lúc 7:57

Đáp án A

Bình luận (0)