Những câu hỏi liên quan
PB
Xem chi tiết
CT
4 tháng 6 2018 lúc 9:25

Đáp án B

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 11 2017 lúc 13:04

Đáp án A

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 7 2017 lúc 14:42

Đáp án A

Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.

Cách giải : Đặt x = a – t => dx = –dt. Đổi cận 

=> 

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2017 lúc 13:45

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

g ( 0 ) . g ( 0 , 5 )   =   [ f ( 0 )   −   f ( 0 , 5 ) ] . [ f ( 0 , 5 )   −   f ( 0 ) ]   =   − f ( 0 )   −   f ( 0 , 5 )   2   ≤   0 .

- Nếu g(0).g(0,5) = 0 thì x = 0 hay x=0,5 là nghiệm của phương trình g(x) = 0

- Nếu g(0).g(0,5) < 0 (1)

Vì y = f(x) và y = f(x + 0,5) đều liên tục trên đoạn [0; 1] nên hàm số y = g(x) cũng liên tục trên [0; 1] và do đó nó liên tục trên [0; 0,5] (2)

Từ (1) và (2) suy ra phương trình g(x) = 0 có ít nhất một nghiệm trong khoảng

Kết luận : Phương trình g(x) = 0 hay f(x) − f(x + 0,5) = 0 luôn có nghiệm trong đoạn (0;0,5)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 1 2018 lúc 14:35

Đáp án A

Mệnh đề đúng 1,3

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 3 2018 lúc 18:12

Bình luận (0)
NM
Xem chi tiết
NL
28 tháng 4 2021 lúc 22:24

Đặt \(g\left(x\right)=f\left(x+\dfrac{1}{3}\right)-f\left(x\right)\)

Hiển nhiên \(g\left(x\right)\) cũng liên tục trên R

Ta có: \(g\left(0\right)=f\left(\dfrac{1}{3}\right)-f\left(0\right)\)

\(g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(\dfrac{2}{3}\right)\)

\(g\left(\dfrac{1}{3}\right)=f\left(\dfrac{2}{3}\right)-f\left(\dfrac{1}{3}\right)\)

Cộng vế với vế:

\(g\left(0\right)+g\left(\dfrac{1}{3}\right)+g\left(\dfrac{2}{3}\right)=f\left(1\right)-f\left(0\right)=0\)

- Nếu tồn tại 1 trong 3 giá trị \(g\left(0\right);g\left(\dfrac{1}{3}\right);g\left(\dfrac{2}{3}\right)\) bằng 0 thì hiển nhiên pt có nghiệm

- Nếu cả 3 giá trị đều khác 0 \(\Rightarrow\) tồn tại ít nhất 2 trong 3 giá trị \(g\left(0\right)\) ; \(g\left(\dfrac{1}{3}\right)\) ; \(g\left(\dfrac{2}{3}\right)\) trái dấu

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 3 tích số: \(g\left(0\right).g\left(\dfrac{1}{3}\right)\) ; \(g\left(0\right).g\left(\dfrac{2}{3}\right)\) ; \(g\left(\dfrac{1}{3}\right).g\left(\dfrac{2}{3}\right)\) âm

\(\Rightarrow\) Pt \(g\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left[0;1\right]\)

Bình luận (1)
PB
Xem chi tiết
CT
19 tháng 1 2019 lúc 14:11

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 4 2017 lúc 13:18

Bình luận (0)