Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PN
Xem chi tiết
HL
22 tháng 7 2019 lúc 13:44

sao ko ai trả lời vậy

Bình luận (0)
PL
Xem chi tiết
TL
Xem chi tiết
AH
22 tháng 12 2021 lúc 9:43

Bạn tham khảo tại đây:

https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762

Bình luận (0)
H24
Xem chi tiết
PQ
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
BH
20 tháng 2 2022 lúc 19:48

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)

Bình luận (0)
VN
Xem chi tiết
NP
Xem chi tiết
AH
6 tháng 1 2024 lúc 17:58

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

Bình luận (0)
H24
Xem chi tiết
NC
29 tháng 11 2019 lúc 21:42

Đề sai? 3^x = 2^y = 12^-x?

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
H24
8 tháng 12 2019 lúc 19:42

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)

\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)

\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)

\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
LT
8 tháng 12 2019 lúc 20:06

Mk k hiểu dòng cuối

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 12 2019 lúc 20:18

\(\frac{x+y}{-z}+\frac{y+z}{-x}+\frac{z+x}{-y}-4=\left(\frac{x+y}{-z}-1\right)+\left(\frac{y+z}{-x}-1\right)+\left(\frac{z+x}{-y}-1\right)-1\)

\(=\frac{x+y-\left(-z\right)}{-z}+\frac{y+z-\left(-x\right)}{-x}+\frac{z+x-\left(-y\right)}{-y}-1=\left(x+y+z\right)\left(\frac{1}{-x}+\frac{1}{-y}+\frac{1}{-z}\right)-1\)

\(=\frac{3}{-x}+\frac{3}{-y}+\frac{3}{-z}-1=\frac{-3xy-3yz-3zx}{xyz}-1=0-1=-1\)

Bình luận (0)
 Khách vãng lai đã xóa