LC

\(\text{cho x,y,z là các số thực khác 0 và thỏa mãn điều kiện xy+yz+zx=0. Tính giá trị của biểu thức A= }\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}\)

BH
20 tháng 2 2022 lúc 19:48

\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)

đề cho xy+yz+xz=0 nhân cả 2 vế với -z

=>-xyz-\(z^2\left(y+x\right)\)=0

=>-xyz=\(z^2x+z^2y\)

cmtt bạn nhân với -y và -z

=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
KG
Xem chi tiết
TN
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
KG
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết