Có bao nhiêu giá trị nguyên của tham số m∈[-2019;2019] để phương trình 2019 x + 2 x - 1 x + 1 + m x - 2 m - 1 x - 2 = 0 có đúng 3 nghiệm thực phân biệt
A. 4038
B. 2019
C. 2017
D. 4039
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = log x 2 - 2 x m + 3 + 2019 xác định với mọi x ∈ R ?
A. Vô số
B. 2019
C. 2020
D. 2018
Có bao nhiêu giá trị nguyên thuộc đoạn [0;2019] của tham số m để phương trình 4 x - m + 2018 2 x + 2019 + 3 m = 0 có hai nghiệm trái dấu?
A.2016
B.2019
C.2013
D.2018
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn - 10 ; 10 để hàm số y = x 3 - 3 x 2 + 3 m x + 2019 nghịch biến trên khoảng 1 ; 2 ?
A. 11
B. 20
C. 10
D. 21
Chọn A.
TXĐ: D = R
Ta có: y ' = 3 x 2 - 6 x + 3 m
Để hàm số đã cho nghịch biến trên 1 ; 2
thì y ' ≤ 0 , ∀ x ∈ 1 ; 2 và bằng 0 tại hữu hạn điểm
Hàm số y = x - 1 2 đồng biến trên 1 ; + ∞ nên cũng đồng biến trên 1 ; 2
Lại có m ∈ - 10 ; 10 và m ∈ Z nên m ∈ - 10 ; - 9 ; . . ; 0
Vậy có 11 giá trị của m
Cho hàm số y = x 3 - 3 m x + 2 với m là tham số. Có bao nhiêu giá trị nguyên m < 2019 để hàm số có nhiều điểm cực trị nhất?
A. 2017
B. 2018
C. 4037
D. 4035
Có tất cả bao nhiêu giá trị nguyên của tham số m (biết m ≥ - 2019 ) để hệ phương trình sau có nghiệm thực?
x 2 + x - y 3 = 1 - 2 m 2 x 3 - x 2 y 3 - 2 x 2 + x y 3 = m
A. 2021
B. 2019
C. 2020
D. 2018
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để l i m 9 n + 3 n + 1 5 n + 9 n + a ≤ 1 2187 ?
A. 2011
B. 2018
C. 2019
D. 2012
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Cho hàm số y = x 5 5 - ( 2 m - 1 ) x 4 - m 3 x 3 + 2019 . Có bao nhiêu giá trị của tham số m để hàm số đạt cực tiểu tại x = 0?
A. Vô số .
B. 1.
C. 2 .
D. 0 .
Đáp án A
Vậy g(x) có 5 điểm cực trị.
Có bao nhiêu giá trị nguyên của tham số m thỏa mãn m \(\le\)2019 để phương trình \(x^2+2\left(3-m\right)x+1+4\sqrt{2x\left(x^2+1\right)}\)có nghiệm
Có bao nhiêu giá trị nguyên của tham số m để hàm số f x = 2 x 3 - 6 x 2 - m + 1 có các giá trị cực trị trái dấu?
A. 2.
B. 9.
C. 3.
D. 7.
Đáp án D.
Ta có f ' x = 6 x 2 - 12 x ; f ' x = 0 ⇔ [ x = 0 ⇒ y 0 = 1 - m x = 2 ⇒ y 2 = - 7 - m .
Theo bài ra, ta có y 0 . y 2 < 0 ⇔ 1 - m - 7 - m < 0 ⇔ - 7 < m < 1 .