Những câu hỏi liên quan
DN
Xem chi tiết
JE
Xem chi tiết
NT
9 tháng 11 2021 lúc 23:02

\(=-\left(x^2-6x-8\right)\)

\(=-\left(x^2-6x+9\right)+17\)

\(=-\left(x-3\right)^2+17\le17\forall x\)

Dấu '=' xảy ra khi x=3

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 7 2018 lúc 9:04

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2018 lúc 7:44

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 9 2017 lúc 17:26

Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ),  x 0  ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.

Đáp án: D

Bình luận (0)
LC
Xem chi tiết
HP
19 tháng 12 2020 lúc 15:46

\(\left[1;-4\right]??\)

Bình luận (0)
ST
Xem chi tiết
PB
Xem chi tiết
CT
7 tháng 7 2018 lúc 9:17

\

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 6 2017 lúc 10:06

Vẽ hình:

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

Với x = 0 thì hàm số đạt giá trị nhỏ nhất bằng 0. Không có giá trị nào của hàm số để đạt giá trị lớn nhất.

Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

Hàm số đạt giá trị lớn nhất y = 0 khi x = 0 . Không có giá trị bào của x để hàm số đạt giá trị nhỏ nhất.

Bình luận (0)
NA
Xem chi tiết
AH
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

Bình luận (0)