Những câu hỏi liên quan
MN
Xem chi tiết
H24
15 tháng 4 2019 lúc 23:00

\(VT=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge4+2+5=11\)

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 8 2019 lúc 6:49

Bình luận (0)
H24
Xem chi tiết
SV
13 tháng 1 2015 lúc 10:56

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2018 lúc 4:16

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 12 2018 lúc 10:40

Chọn D 

Ta có: x(3 + 5i) - y(1 + 2i) = 9 + 16i <=> (3x - y) + (5x - 2y) = 9 + 16i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy: T = |x - y| = 5

Bình luận (0)
PN
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
NL
19 tháng 6 2019 lúc 18:18

\(P=\frac{1}{x^3\left(2y-x\right)}+x\left(2y-x\right)-x\left(2y-x\right)+x^2+y^2\)

\(P\ge\frac{2}{x}-2xy+2x^2+y^2\)

\(P\ge\frac{1}{x}+\frac{1}{x}+x^2+\left(x-y\right)^2\ge3+\left(x-y\right)^2\ge3\)

Dấu "=" xảy ra khi \(x=y=1\)

Bình luận (0)
AH
19 tháng 6 2019 lúc 18:20

Lời giải:

Với $x,y$ là các số thực dương, áp dụng BĐT Cauchy ta có:

\(x^2+y^2\geq 2xy\)

\(\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq \frac{1}{x^3(2y-x)}+2xy(1)\)

$2y>x$ nên $2y-x>0$. Tiếp tục áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x^3(2y-x)}+2xy=\frac{1}{x^3(2y-x)}+x(2y-x)+x^2\geq 3\sqrt[3]{\frac{1}{x^3(2y-x)}.x(2y-x).x^2}=3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{x^3(2y-x)}+x^2+y^2\geq 3\) (đpcm)

Dấu "=" xảy ra khi $x=y=1$

Bình luận (0)