Những câu hỏi liên quan
NC
Xem chi tiết
PB
Xem chi tiết
CT
9 tháng 2 2019 lúc 14:41

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 5 2018 lúc 4:43

Chọn B.

Vậy, tập nghiệm là  S = 1 .

Bình luận (0)
M0
Xem chi tiết
NT
14 tháng 3 2022 lúc 15:44

a: Thay x=-2 vào pt,ta được:

-8+4a+8-4=0

=>4a-4=0

hay a=1

b: Pt sẽ là \(x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

=>(x+1)(x-2)(x+2)=0

hay \(x\in\left\{-1;2;-2\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
11 tháng 4 2017 lúc 5:24

a. Đúng

Vì x 2  + 1 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

4x – 8 + (4 – 2x) = 0 ⇔ 2x – 4 = 0 ⇔ 2x = 4 ⇔ x = 2

b. Đúng

Vì  x 2  – x + 1 = x - 1 / 2 2  + 3/4 > 0 với mọi x nên phương trình đã cho tương đương với phương trình:

(x + 2)(2x – 1) – x – 2 = 0 ⇔ (x + 2)(2x – 2) = 0

⇔ x + 2 = 0 hoặc 2x – 2 = 0 ⇔ x = - 2 hoặc x = 1

c. Sai

Vì điều kiện xác định của phương trình là x + 1 ≠ 0 ⇔ x ≠ - 1

Do vậy phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 không thể có nghiệm x = - 1

d. Sai

Vì điều kiện xác định của phương trình là x ≠ 0

Do vậy x = 0 không phải là nghiệm của phương trình Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 2 2018 lúc 3:40

Đáp án cần chọn: A

Bình luận (0)
NQ
Xem chi tiết
H9
17 tháng 8 2023 lúc 16:36

Ta có tập nghiệm của phương trình là:

\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Tập hợp S là:

\(S=\left\{-2;\dfrac{1}{2};3\right\}\)

Lần lược các phương án:

A. \(-2\in S\) (đúng)

B. \(3\in S\) (đúng)

C. \(2\in S\) (Sai)

D. \(\dfrac{1}{2}\in S\) (Đúng)

⇒ Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2019 lúc 10:11

Bình luận (0)
MN
Xem chi tiết
QB
10 tháng 4 2021 lúc 20:21

x2-2(m-1)x+m2-3m=0

'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1

áp dụng hệ thức Vi-ét ta được 

x1+x2=2(m-1)                                               (1)

x1*x2=m2-3m                                         (2)  

a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1

b) để PT có duy nhất một nghiệm âm thì x1*x2 <0

Bình luận (0)
NT
10 tháng 4 2021 lúc 20:54

e) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)

\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\)(1)

\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)

Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)

Bình luận (0)