Những câu hỏi liên quan
TN
Xem chi tiết
NL
20 tháng 12 2020 lúc 23:40

ĐKXĐ: \(x\ge0\)

- Với \(x=0\) ko phải là nghiệm

- Với \(x>0\) chia 2 vế cho \(x\) ta được:

\(\dfrac{x^2+4}{x}+2-m=4\sqrt{\dfrac{x^2+4}{x}}\)

Đặt \(\sqrt{\dfrac{x^2+4}{x}}=t\ge2\)

\(\Rightarrow t^2-4t+2=m\)

Xét hàm \(f\left(t\right)=t^2-4t+2\) với \(t\ge2\)

\(\Rightarrow f\left(t\right)\ge f\left(2\right)=-2\Rightarrow m\ge-2\)

Có \(2018-\left(-2\right)+1=2021\) giá trị nguyên của m

Bình luận (0)
NT
Xem chi tiết
VH
Xem chi tiết
NC
Xem chi tiết
HP
20 tháng 12 2020 lúc 22:41

ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{x+2}+\sqrt{2-x}=t\left(2\le t\le2\sqrt{2}\right)\)

Phương trình đã cho trở thành:

\(t+t^2-4+2m+3=0\)

\(\Leftrightarrow2m=f\left(t\right)=-t^2-t+1\)

Phương trình đã cho có nghiệm khi \(minf\left(t\right)\le2m\le maxf\left(t\right)\)

\(\Leftrightarrow-7-2\sqrt{2}\le2m\le-5\)

\(\Leftrightarrow\dfrac{-7-2\sqrt{2}}{2}\le m\le-\dfrac{5}{2}\)

Bình luận (0)
NT
Xem chi tiết
NL
11 tháng 11 2021 lúc 21:44

Đặt \(\left|x\right|=t\ge0\)

\(\Rightarrow t^2-2t+1-m=0\) (1)

Phương trình (1) là bậc 2 nên có đối đa 2 nghiệm t

Với mỗi giá trị \(t>0\) cho 2 nghiệm x tương ứng nên pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(1-m\right)>0\\t_1+t_2=2>0\\t_1t_2=1-m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< 1\end{matrix}\right.\) \(\Leftrightarrow0< m< 1\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 5 2018 lúc 5:44

Điều kiện:  x > 3 m > 0

Phương trình tương đương với: 

Vì 0 < x - 3 3 = 1 - 3 x < 1 , ∀ x ∈ 3 ; + ∞  do đó phương trình có nghiệm 

⇔ 0 < m - 9 < 1 ⇔ 9 < m < 10 . Vì vậy không có số nguyên nào thoả mãn.

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 2 2018 lúc 17:17

Bình luận (0)
JV
Xem chi tiết
NL
8 tháng 4 2021 lúc 2:23

ĐKXĐ: ...

\(\Leftrightarrow m^2+m\left(x^2-3x-4\right)-m\sqrt{x+7}-\left(x^2-3x-4\right)\sqrt{x+7}=0\)

\(\Leftrightarrow m\left(x^2-3x-4+m\right)-\sqrt{x+7}\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left(m-\sqrt{x+7}\right)\left(x^2-3x-4+m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{x+7}\left(1\right)\\m=-x^2+3x+4\left(2\right)\end{matrix}\right.\)

Với \(m\) nguyên tố \(\Rightarrow\) (1) luôn có đúng 1 nghiệm

Để pt có số nghiệm nhiều nhất \(\Rightarrow\) (2) có 2 nghiệm pb

\(\Rightarrow y=m\) cắt \(y=-x^2+3x+4\) tại 2 điểm pb thỏa mãn \(x\ge-7\)

\(\Rightarrow-66\le m\le\dfrac{25}{4}\Rightarrow m=\left\{2;3;5\right\}\)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2018 lúc 7:15

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 1 2019 lúc 15:37

Bình luận (0)