Những câu hỏi liên quan
H24
Xem chi tiết
NT
20 tháng 8 2023 lúc 20:17

a: \(y=u^2=\left(sinx\right)^2\)

b: \(y'\left(x\right)=\left(sin^2x\right)'=2\cdot sinx\cdot cosx\)

\(y'\left(u\right)=\left(u^2\right)'=2\cdot u\)

\(u'\left(x\right)=\left(sinx\right)'=cosx\)

=>\(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)

Bình luận (0)
NV
Xem chi tiết
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 20:19

a)      

\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln x}} - {e^{2.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln {x_0}}}.\left( {{e^{2\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {{e^{2.\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {2\ln x - 2\ln {x_0}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}}\\ = 2x_0^2.\frac{1}{{{x_0}}} = 2x\\ \Rightarrow \left( {{x^2}} \right)' = 2x\end{array}\)

b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì: \(y' = n.{x^{n - 1}}\)

Bình luận (0)
NA
Xem chi tiết
NL
30 tháng 4 2021 lúc 22:04

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

Bình luận (0)
NL
30 tháng 4 2021 lúc 22:15

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)

Bình luận (0)
H24
Xem chi tiết
QL
22 tháng 9 2023 lúc 20:19

a)    Ta có: \(f'\left( x \right) = \left( {{x^{22}}} \right)' = 22.{x^{21}}\)

b)    Đạo hàm của hàm số tại điểm \({x_0} =  - 1\) là: \(f'\left( { - 1} \right) = 22.{\left( { - 1} \right)^{21}} =  - 22\)

Bình luận (0)
NA
Xem chi tiết
NL
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

Bình luận (0)
PB
Xem chi tiết
CT
9 tháng 12 2017 lúc 13:05

- Giả sử Δx là số gia của đối số tại xo bất kỳ. Ta có:

Giải bài tập Toán 11 | Giải Toán lớp 11

- Dự đoán đạo hàm của y = x100 tại điểm x là 100x99

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:06

a) Với \({x_0}\) bất kì, ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - x_0^3}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x{x_0} + x_0^2} \right) = 3x_0^2\)

Vậy hàm số \(y = {x^3}\) có đạo hàm là hàm số \(y' = 3{x^2}\)

b) \(y' = \left( {{x^n}} \right)' = n{x^{n - 1}}\)

Bình luận (0)
H24
Xem chi tiết
MP
17 tháng 8 2023 lúc 15:03

\(a,y'=\left(f\left(g\left(x\right)\right)\right)'\)

\(=f'\left(g\left(x\right)\right).g'\left(x\right)\)

\(=e^{g\left(x\right)}.\left(2x-1\right)\)

\(=e^{x^2-x}.\left(2x-1\right)\)

\(b,y'=\dfrac{d}{dx}\left(3^{sinx}\right)\)

\(=\dfrac{d}{dx}\left(e^{ln3.sinx}\right)\)

\(=\dfrac{d}{dx}\left(ln3.sinx\right).e^{ln3.sinx}\)

\(=ln3.cosx.3^{sinx}\)

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 8 2023 lúc 20:14

a: \(y'=\left(x^2-x\right)'=2x-1\)

\(y''=\left(2x-1\right)'=2\)

b: \(y'=\left(cosx\right)'=-sinx\)

\(y''=\left(-sinx\right)'=-cosx\)

Bình luận (0)