Những câu hỏi liên quan
NA
Xem chi tiết
NL
30 tháng 7 2021 lúc 22:51

1. \(y'=3x^2\sqrt{x}+\dfrac{x^3-5}{2\sqrt{x}}=\dfrac{7x^3-5}{2\sqrt{x}}\)

2. \(y'=3x^5+\dfrac{3}{x^2}+\dfrac{1}{\sqrt{x}}\)

3. \(y'=2-\dfrac{2}{\left(x-2\right)^2}\)

Bình luận (0)
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 8 2023 lúc 20:17

a: \(y=u^2=\left(sinx\right)^2\)

b: \(y'\left(x\right)=\left(sin^2x\right)'=2\cdot sinx\cdot cosx\)

\(y'\left(u\right)=\left(u^2\right)'=2\cdot u\)

\(u'\left(x\right)=\left(sinx\right)'=cosx\)

=>\(y'\left(x\right)=y'\left(u\right)\cdot u'\left(x\right)\)

Bình luận (0)
NV
Xem chi tiết
PB
Xem chi tiết
CT
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 4 2019 lúc 4:55

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 12 2017 lúc 4:15

Đáp án C

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2018 lúc 12:51

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 3 2017 lúc 10:25

Bình luận (0)
PB
Xem chi tiết
CT
6 tháng 8 2019 lúc 11:33

Đáp án B

Vậy hàm số có 2 cực trị

Bình luận (0)