Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 1 2018 lúc 14:53

Chọn C.

Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.

Gọi I = AC ∩ BD, J = AC'  ∩  SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.

Suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó dễ thấy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 9 2017 lúc 14:46

Chọn A.

Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM  ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 9 2019 lúc 15:05

Bình luận (0)
PB
Xem chi tiết
CT
1 tháng 10 2019 lúc 18:10

Bình luận (0)
LT
Xem chi tiết
LA
1 tháng 6 2021 lúc 17:17

a, Ta có: \(\left\{{}\begin{matrix}AB\perp SA\left(do:SA\perp\left(ABCD\right)\right)\\AB\perp AD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow AB\perp\left(SAD\right)\)

Từ C kẻ CH // AB  ⇒ CH ⊥ (SAD)

⇒ d (C, (SAD)) = CH = 2a

b, Ta có: \(\left(SAC\right)\cap\left(ABCD\right)=AC\)

Hạ DE ⊥ AC ⇒ DE ⊥ (SAC)

⇒ d(D, (SAC)) = DE

Ta có: AC = 2a√2, AH = HC 2a và HD = a

Xét tam giác HDC vuông tại H, có: \(DC=\sqrt{HD^2+HC^2}=a\sqrt{5}\)

Xét tam giác AHC vuông cân tại H, có: \(\widehat{HAC}=45^o=\widehat{DAE}\)

Xét tam giác ADE vuông tại E, có: \(DE=AD.sin\widehat{DAE}=\dfrac{3a\sqrt{2}}{2}\)

 

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 9 2019 lúc 10:45


Xét tứ giác ABCE

 là hình bình hành.

Lại có

 là hình vuông cạnh a.

Bán kính đường tròn ngoại tiếp hình vuông ABCE

R d = a 2 2  

Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp

S.ABCE là:

Chọn B.

Bình luận (0)
JE
Xem chi tiết
NL
29 tháng 4 2021 lúc 0:28

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

Bình luận (1)
PB
Xem chi tiết
CT
16 tháng 3 2019 lúc 8:38

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 9 2018 lúc 9:01

Phương pháp

+ Xác định góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d  và đường thẳng d' với d' là hình chiếu của d  trên mặt phẳng (P).

 

+ Thể tích hình chóp có chiều cao h và diện tích đáy S là V = 1 3 h S

Cách giải:

+ Ta có SA  (ABCD) => AB là hình chiếu của

SB lên mặt phẳng (ABCD) . Suy ra góc giữa SB và đáy là góc ∠  SBA = 600.

+ Xét tam giác vuông SAB có: 

 

+ Diện tích đáy

 

+ Thể tích khối chóp là

Chọn C. 

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 7 2019 lúc 16:53

Đáp án C

Bình luận (0)