Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 5 2018 lúc 17:01

Đáp án đúng : D

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 11 2017 lúc 7:30

Đáp án đúng : C

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 6 2019 lúc 16:00

Chọn C

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 10 2019 lúc 15:06

Chọn B

Bình luận (0)
DN
Xem chi tiết
AH
6 tháng 8 2021 lúc 18:41

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

Bình luận (0)
AH
6 tháng 8 2021 lúc 18:42

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

Bình luận (0)
AH
6 tháng 8 2021 lúc 18:46

1.

\(y=\cos x+\cos (x-\frac{\pi}{3})=\cos x+\frac{1}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(=\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x\)

\(y^2=(\frac{3}{2}\cos x+\frac{\sqrt{3}}{2}\sin x)^2\leq (\cos ^2x+\sin ^2x)(\frac{9}{4}+\frac{3}{4})\)

\(\Leftrightarrow y^2\leq 3\Rightarrow -\sqrt{3}\leq y\leq \sqrt{3}\)

Vậy $y_{\min}=-\sqrt{3}; y_{max}=\sqrt{3}$

Bình luận (0)
QA
Xem chi tiết
NL
17 tháng 4 2021 lúc 11:38

\(A=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\Rightarrow-\sqrt{2}\le A\le\sqrt{2}\)

B ko rõ đề

\(C=\sqrt{a^2+b^2}\left(\dfrac{a}{\sqrt{a^2+b^2}}sinx-\dfrac{b}{\sqrt{a^2+b^2}}cosx\right)\)

Đặt \(\dfrac{a}{\sqrt{a^2+b^2}}=cosy\Rightarrow\dfrac{b}{\sqrt{a^2+b^2}}=siny\)

\(\Rightarrow C=\sqrt{a^2+b^2}\left(sinx.cosy-cosx.siny\right)=\sqrt{a^2+b^2}sin\left(x-y\right)\)

\(\Rightarrow-\sqrt{a^2+b^2}\le C\le\sqrt{a^2+b^2}\)

\(D=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)

\(\Rightarrow-1\le D\le1\)

Bình luận (0)
HH
Xem chi tiết
NC
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 11 2019 lúc 17:44

Chọn B

Bình luận (0)
H24
Xem chi tiết