Những câu hỏi liên quan
H24
Xem chi tiết
TG
15 tháng 9 2021 lúc 7:34

bạn viết câu hỏi dưới dạng trực quan để mn dễ hiểu nhé!

Bình luận (0)
H24
Xem chi tiết
AK
14 tháng 9 2021 lúc 22:45

\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)

Ta có :   \(\left(x-2\right)^2\ge0\) =>  \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)                 

Dấu " = "  xảy ra   \(\Leftrightarrow\)   \(\sqrt{\left(x-2\right)^2}=0\)            

                              \(\Leftrightarrow\)  \(x-2=0\)                  

                              \(\Leftrightarrow\)  x  =  2 

Vậy giá trị nhỏ nhất của A là :  \(\sqrt{21}\)      khi x  =  2

\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)      

Vì   \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)                  

Dấu "  =  "  xảy ra  \(\Leftrightarrow\)   \(\sqrt{\left(x-3\right)^2}=0\)                          

                                \(\Leftrightarrow\)  \(x-3=0\)                      

                                \(\Leftrightarrow\) \(x=3\)                             

Vậy giá trị nhỏ nhất của B là :  \(\sqrt{21}\)  khi x  =  3

Bình luận (0)
 Khách vãng lai đã xóa
AK
14 tháng 9 2021 lúc 22:46

\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)

Vì  

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LN
29 tháng 10 2021 lúc 15:46

A

Bình luận (0)
NH
29 tháng 10 2021 lúc 15:47

A nha bn

Bình luận (0)
DA
29 tháng 10 2021 lúc 15:47

A

Bình luận (0)
2T
Xem chi tiết
2T
24 tháng 11 2021 lúc 22:19

tl mình nha

Bình luận (0)
MH
24 tháng 11 2021 lúc 22:23

a) \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x\left(x-3\right)-\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10\)

\(=\left(x-4\right)^2+10\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ 10

Min A=10 ⇔ x=4

b) tương tự

Bình luận (0)
H24
Xem chi tiết
2T
Xem chi tiết
NM
25 tháng 11 2021 lúc 10:16

\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)

Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)

Bình luận (1)
2T
Xem chi tiết
AH
26 tháng 11 2021 lúc 10:08

Bài 7:

a.

$A=(x-1)(x-3)+11=x^2-4x+3+11=x^2-4x+14$

$=(x^2-4x+4)+10=(x-2)^2+10\geq 10$
Vậy gtnn của $A$ là $10$ khi $x=2$

b.

$B=5-4x^2+4x=6-(4x^2-4x+1)=6-(2x-1)^2\leq 6$

Vậy gtln của $B$ là $6$ khi $2x-1=0\Leftrightarrow x=\frac{1}{2}$

c.

$x-y=2\Rightarrow x=y+2$. Khi đó:

$B=y^2-3x^2=y^2-3(y+2)^2=y^2-(3y^2+12y+12)=-2y^2-12y-12$

$=6-2(y^2+6y+9)=6-2(y+3)^2\leq 6$

Vậy $B_{\max}=6$

Bình luận (0)
AH
26 tháng 11 2021 lúc 10:09

Bài 8:

Đặt $f(x)=x^3-3x^2+5x+a$

Theo định lý Bê-du, để $f(x)\vdots x-2$ thì $f(2)=0$

$\Leftrightarrow 6+a=0$

$\Leftrightarrow a=-6$

Bình luận (2)
AH
26 tháng 11 2021 lúc 15:35

Bài 8 cách khác:

$x^3-3x^2+5x+a=x^2(x-2)-x(x-2)+3(x-2)+(a+6)$

$=(x-2)(x^2-x+3)+(a+6)$

Vậy $x^3-3x^2+5x+a$ chia $x-2$ có dư là $a+6$

Để phép chia là chia hết thì số dư phải bằng $0$

Tức là $a+6=0$

$\Rightarrow a=-6$

Bình luận (1)
NA
Xem chi tiết
H24
25 tháng 8 2021 lúc 14:35

p) \(x^3-3x^2+3x-1+2\left(x^2-x\right)\\ =\left(x^3-1\right)-\left(3x^2-3x\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1-3x+2x\right)\\ =\left(x-1\right)\left(x^2+1\right)\)

 

Bình luận (1)
NT
25 tháng 8 2021 lúc 14:36

p:Ta có: \(x^3-3x^2+3x-1+2\left(x^2-x\right)\)

\(=\left(x-1\right)^3+2x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1+2x\right)\)

\(=\left(x-1\right)\left(x^2+1\right)\)

Bình luận (1)
H24
25 tháng 8 2021 lúc 14:43

r) Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-2-z-2-y-z-2-x-2-z-x-2-y-2-thanh-nhan-tu-faq343704.html

Bình luận (1)
H24
Xem chi tiết
NT
4 tháng 7 2021 lúc 21:25

a) Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

b) Ta có: \(x^2+x-20=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

c) Ta có: \(3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) Ta có: \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2-7x+3x-7=0\)

\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)

e) Ta có: \(5x^2-16x+3=0\)

\(\Leftrightarrow5x^2-15x-x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Bình luận (0)
H24
4 tháng 7 2021 lúc 21:26

a)

\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)

c)

\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)

b)

\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

d)

\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)

e)

\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f)

\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

\(\)

Bình luận (0)