Cho Parapol P : y = x 2 + 1 và đường thẳng d : y = m x + 2 . Tìm m để diện tích hình phẳng giới hạn bởi (P) và (d) đạt giá trị nhỏ nhất?
A. 0
B. 3 4 .
C. 4 3
D. 1
cho parapol (P): y=\(\frac{1}{2}x^2\) và đường thẳng (d):y=x+m
tìm m để đường thẳng (d) cắt parapol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1:x2 thỏa mãn \(x1^2+x2^2=5m\)
cho parapol (P): y=x2 và đường thẳng (d): y=2x-m+9. tìm m để đường thẳng (d) cắt parapol (P) tại hai điểm nằm về hai phía của trục tung
Phương trình hoành độ giao điểm:
\(x^2=2x-m+9\Leftrightarrow x^2-2x+m-9=0\) (1)
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung
\(\Leftrightarrow\) (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m-9< 0\Rightarrow m< 9\)
cho parapol (P) : y = x^2 và đường thẳng (d) : y = 2mx - m^2 + m + 1
a. tìm m để đường thẳng (d) cắt đường thẳng (d'): y = -2x -1 tại một điểm nằm trên trục tung
b. xác định m để (d) cắt (P) tại hai điểm phân biệt (x1;y1); (x2;y2) thỏa mãn oy1 + y2 + 2x1 + 2x2 = 22
đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\): \(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
câu b :
Xét phương trình hoành độ gia điểm của P và d có :
\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)
để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)
\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)
khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)
\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)
\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :
\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)
\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @
Kết luận nghiệm
tính denta sai rùi rùi bạn ơi
phải là 145 chứ ko phải 144
cho hàm số y=f(x) = -x+m-2 (d)
gọi x1,x2 là hoành dộ giao điểm của đường thẳng (d) và parapol y=x2. tìm m để x12x22 - 4x1 - 4x2 = 4
Xét phương trình hoành độ giao điểm của (d) và (P):
x2 + x - m + 2 = 0
Phương trình có nghiệm ⇔ △ ≥ 0 ⇔ 1-4(2-m) ≥ 0 ⇔ 4m-7 ≥ 0 ⇔ m ≥ 1,75
Theo hệ thức Vi-ét có: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1.x_2=2-m\end{matrix}\right.\)
=> x12.x22 - 4x1 - 4x2 = 4 ⇔ x12.x22 - 4(x1 + x2) = 4
⇔ (2 - m)2 - 4.(-1) = 4
⇔ (2 - m)2 + 4 = 4
⇔ (2 - m)2 = 0
⇔ 2 - m = 0
⇔ m = 2 (t/m)
cho parapol (P): y=x2 và đường thẳng (d): y=-x+2
a) vẽ đồ thị (P) và (d) trên cùng một hệ trục tọa độ
b) tìm tọa độ giao điểm của (d) và (P)
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=-x+2\)
\(\Leftrightarrow x^2+x-2=0\)(1)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình (1) có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
Thay x=1 vào (d), ta được:
y=-1+2=1
Thay x=-2 vào (d), ta được:
y=-(-2)+2=2+2=4
Vậy: (P) và (d) có hai tọa độ giao điểm là (1;1) và (-2;4)
cho parapol (P): y=x2 và đường thẳng (d): y=-x+2
a) vẽ đồ thị (P) và (d) trên cùng một hệ trục tọa độ
b) tìm tọa độ giao điểm của (d) và (P) bằng phép toán
a) Bạn tự vẽ
b) Phương trình hoành độ giao điểm của (P) và (d)
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
+) Với \(x=1\) thì \(y=1\)
+) Với \(x=-2\) thì \(y=4\)
Vậy (P) cắt (d) tại 2 điểm \(\left(1;1\right)\) và \(\left(-2;4\right)\)
Trong mặt phẳng tọa độ Ãy cho parapol (P): y=\(x^2\) và đường thẳng (d): y=mx+1-m.
a) Xác định tọa độ giao điểm của (P) và (d) khi m=-1
b) Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt có hoàng độ \(x_1\);\(x_2\) thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=3\)
a: Khi m=-1 thì (d): y=-x+1-(-1)=-x+2
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
b: PTHĐGĐ là:
x^2-mx+m-1=0
Δ=(-m)^2-4(m-1)
=m^2-4m+4=(m-2)^2>=0
Để (P) cắt (d) tại hai điểm pb thì m-2<>0
=>m<>2
\(\sqrt{x_1}+\sqrt{x_2}=3\)
=>x1+x2+2 căn x1x2=9
=>\(m+2\sqrt{m-1}=9\)
=>\(m-1+2\sqrt{m-1}=8\)
=>\(\left(\sqrt{m-1}+4\right)\left(\sqrt{m-1}-2\right)=0\)
=>m=5
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) : y = mx - m + 1 và parapol y = x2.
Tìm m để (d) cắt (p) tại hai điểm phân biệt có tung độ bằng 4
Xin giải giúp mình câu này nhanh nhá
trên mặt phẳng tọa độ Oxy cho Parapol (P) : y=x^2 và đường thẳng d : y=x^2 -m +3
a, tìm tọa độ giao điểm của d và P khi m=1
b, tìm m để d cắt P tại 2 điểm phân biệt
c, với gtri nào của m thì P và d cắt nhau tại hai điểm phân biệt M(x1;y1); N(x1;x2) thỏa mãn y1+y2=3
a: Sửa đề; (d): y=x-m+3
Khi m=1 thì (d): y=x-1+3=x+2
PTHĐGĐ là:
x^2=x+2
=>x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
Khi x=2 thì y=2^2=4
Khi x=-1 thì y=(-1)^2=1
b: PTHĐGĐ là:
x^2-x+m-3=0
Δ=(-1)^2-4(m-3)
=1-4m+12=-4m+13
Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0
=>m<13/4
c: y1+y2=3
=>x1^2+x2^2=3
=>(x1+x2)^2-2x1x2=3
=>1-2(m-3)=3
=>2(m-3)=-2
=>m-3=-1
=>m=2(nhận)
Trên mặt phẳng tọa độ Oxy, cho điểm T(-2;-2), cho parapol(P) có phương trình y=-8x2 và đường thẳng có phương trình y = -2x -6
a) Điểm T có thuộc đường thẳng d không?
b)Xác định tọa độ giao điểm của đường thẳng d và parabol(P).
Mọi người giải 1 một bài hoàn chỉnh giúp mình nha
a) Thay tọa dộ của điểm T vào dg thẳng d ta dc: -2.(-2) - 6 = -2 (Thỏa mãn)
Vậy điểm T có thuộc dg thẳng d
b) Pt hoành độ giao điểm của (d) và (P) là: -8x2 = -2x - 6
<=> 8x2 - 2x - 6 = 0
<=> (x - 1)(8x + 6) = 0 <=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{4}\end{cases}}\)
* Với x = 1 => y = -8
* Với x = -3/4 => y = -9/2
Tự kết luận nha