Tìm m để hàm số y = sin x sin x - m nghịch biến trên π 6 ; π 2
Tìm m để hàm số \(y=\sqrt{\dfrac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x+\sqrt{2}}}\) xác định với mọi \(x\in[-\dfrac{\pi}{2};\dfrac{\pi}{2}]\)
Bạn tham khảo:
Tìm m để hàm số : \(y=\sqrt{\frac{m-\sin x-\cos x-2\sin x\cos x}{\sin^{2017}x-\cos^{2019}x \sqrt{2}}}\) xác định với mọi... - Hoc24
Tìm tất cả các giá trị của tham số m để hàm số y = x + m ( sin x + c o s x ) đồng biến trên R
A. m < - 1 2 ∪ m > 1 2
B. - 1 2 ≤ m ≤ 1 2
C. - 3 < m < 1 2
D. m ≤ - 1 2 ∪ m ≥ 1 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = s i n x − m x nghịch biến trên R
A. m < 1
B. m > − 1
C. m > 1
D. m ≥ 1
Đáp án D
Ta có y ' = cos x − m .
Hàm số nghịch biến trên R
⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.
Tìm m để hàm số \(y=\sqrt{\dfrac{sin2x-cos2x+m-1}{6\left(cos^4x+sin^4x\right)+cos8x+7-5m}}\) xác định với mọi số thực x
\(y=\sqrt{\dfrac{\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1}{2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m}}\)
Hàm xác định trên R khi:
TH1: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\ge0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}-m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m< \min\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=\dfrac{327}{32}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ge1+\sqrt{2}\\m< \dfrac{327}{160}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Th2: \(\left\{{}\begin{matrix}\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)+m-1\le0\\2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}-5m< 0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}m\le\min\limits_R\left(\sqrt{2}sin\left(2x-\dfrac{\pi}{4}\right)-1\right)=-1-\sqrt{2}\\5m>\max\limits_R\left(2cos^24x+\dfrac{3}{2}cos4x+\dfrac{21}{2}\right)=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le-1-\sqrt{2}\\m>\dfrac{14}{5}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos x + 2 . sin x + 3 2 . cos x - sin x + 4 . Tính M,m
A. 4/11
B. 3/4
C. 1/2
D. 20/11
Có bao nhiêu giá trị thực của tham số m để hàm số y = cos x + m . sin x + 1 cos x + 2 có giá trị lớn nhất bằng 1
A. 0
B. 1
C. 2
D. 3
Tìm m để hàm số sau xác định\(\forall x\in R:y=\sqrt{sin^4x+cos^4x-2msinxcosx}\)
tìm m để hàm số \(y=\sqrt{sin^2x-2sinx+m-1}\) xác định trên R
Hàm số xác định trên \(R\Leftrightarrow\sin^2x-2\sin x+m-1\ge0,\forall x\in R\left(\text{*}\right)\)
Đặt \(x=t\)
Ta có \(-1\le\sin x\le1\Rightarrow-1\le t\le1\)
\(\left(\text{*}\right)\Leftrightarrow t^2-2t+m-1\ge0,\forall t\in\left[-1;1\right]\\ \Leftrightarrow t^2-2t+1+m-2\ge0\\ \Leftrightarrow\left(t-1\right)^2\ge2-m,\forall t\in\left[-1;1\right]\\ \Leftrightarrow2-m\le Min\left(t-1\right)^2\)
Với \(t\in\left[-1;1\right]\Leftrightarrow0\le\left(t-1\right)^2\le4\)
\(\Leftrightarrow2-m\le0\\ \Leftrightarrow m\ge2\)
Vậy \(m\ge2\) thì hàm số xác định trên \(R\)
Tính đạo hàm của các hàm số sau:
a) \(y = x{\sin ^2}x;\)
b) \(y = {\cos ^2}x + \sin 2x;\)
c) \(y = \sin 3x - 3\sin x;\)
d) \(y = \tan x + \cot x.\)
tham khảo:
a)\(y'=xsin2x+sin^2x\)
\(y'=sin^2x+xsin2x\)
b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)
c)\(y=sin3x-3sinx\)
\(y'=3cos3x-3cosx\)
d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)
\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)
Dựa trên đồ thị hàm số y = sin x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.