Những câu hỏi liên quan
MT
Xem chi tiết
NT
25 tháng 3 2021 lúc 22:23

a) \(A+B=-12x^2y^4-6x^2y^4=-18x^2y^4\)

\(A+C=-12x^2y^4+9x^2y^4=-3x^2y^4\)

\(B+C=-6x^2y^4+9x^2y^4=3x^2y^4\)

Bình luận (0)
CN
26 tháng 3 2021 lúc 15:26

a) A+B=−12x2y4−6x2y4=−18x2y4A+B=−12x2y4−6x2y4=−18x2y4

A+C=−12x2y4+9x2y4=−3x2y4A+C=−12x2y4+9x2y4=−3x2y4

B+C=−6x2y4+9x2y4=3x2y

 

Bình luận (0)
DL
Xem chi tiết
QM
Xem chi tiết
AH
4 tháng 5 2023 lúc 13:54

1.

Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{4}$

$=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b+3c}{2+6+12}=\frac{-20}{20}=-1$

$\Rightarrow a=2(-1)=-2; b=3(-1)=-3; c=4(-1)=-4$

Bình luận (0)
AH
4 tháng 5 2023 lúc 13:55

2.

$S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{9900}$
$=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$

$=1-\frac{1}{100}=\frac{99}{100}$

Bình luận (0)
QM
Xem chi tiết
TM
3 tháng 5 2023 lúc 14:36

a) Ta có : \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=\dfrac{-20}{20}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right)\cdot2=-2\\b=\dfrac{\left(-1\right).6}{2}=-3\\c=\dfrac{\left(-1\right).12}{3}=-4\end{matrix}\right.\)

b) Ta có : \(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}=\dfrac{99}{100}\).

Vậy : \(S=\dfrac{99}{100}.\)

Bình luận (0)
NH
3 tháng 5 2023 lúc 14:44

a)\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b+3c}{2+6+12}=-\dfrac{20}{20}=-1\)

\(\left\{{}\begin{matrix}\dfrac{a}{2}=-1\Leftrightarrow a=-2\\\dfrac{b}{3}=-1\Leftrightarrow b=-3\\\dfrac{c}{4}=-1\Leftrightarrow c=-4\end{matrix}\right.\)

b)\(S=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\\ =\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}\)

Bình luận (0)
TH
Xem chi tiết
AP
Xem chi tiết
NT
26 tháng 2 2022 lúc 12:52

a: \(f\left(-3\right)=3\cdot9=27\)

\(f\left(2\sqrt{2}\right)=3\cdot8=24\)

\(f\left(1-2\sqrt{3}\right)=3\cdot\left(13-4\sqrt{3}\right)=39-12\sqrt{3}\)

b: Ta có: \(f\left(a\right)=12+6\sqrt{3}=\left(3+\sqrt{3}\right)^2=3\left(\sqrt{3}+1\right)^2\)

nên \(3x^2=3\left(\sqrt{3}+1\right)^2\)

hay \(x\in\left\{\sqrt{3}+1;-\sqrt{3}-1\right\}\)

Bình luận (0)
AH
26 tháng 2 2022 lúc 13:39

c.

$f(b)\geq 6b+12$

$\Leftrightarrow 3b^2\geq 6b+12$

$\Leftrightarrow b^2\geq 2b+4$

$\Leftrightarrow b^2-2b-4\geq 0$

$\Leftrightarrow (b-1-\sqrt{5})(b-1+\sqrt{5})\geq 0$

$\Leftrightarrow b\geq 1+\sqrt{5}$ hoặc $b\leq 1-\sqrt{5}$

Bình luận (0)
TK
Xem chi tiết
H9
10 tháng 1 2024 lúc 10:34

Ta có: \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=6^2\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

Mà: \(a^2+b^2+c^2=12\left(1\right)\) 

\(\Rightarrow12+2ab+2ac+2bc=36\)

\(\Rightarrow2ab+2ac+2bc=24\)

\(\Rightarrow ab+ac+bc=12\left(2\right)\)

Từ (1) và (2) \(\Rightarrow a^2+b^2+c^2=ab+ac+bc\) 

\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

Mà: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(a-c\right)^2\ge0\forall a,c\\\left(b-c\right)^2\ge0\forall b,c\end{matrix}\right.\)

Dấu "=" xảy ra: 

\(\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Leftrightarrow a=b=c=\dfrac{6}{3}=2\) 

\(\Rightarrow P=\left(2-3\right)^{2023}+\left(2-3\right)^{2023}+\left(2-3\right)^{2023}\\ =\left(-1\right)^{2023}+\left(-1\right)^{2023}+\left(-1\right)^{2023}=-1-1-1=-3\)

Bình luận (0)
DM
Xem chi tiết
NG
17 tháng 3 2020 lúc 15:01

wow cái tên, VỖ TAY

Bình luận (0)
 Khách vãng lai đã xóa

bạn không học cũng giỏi mà, tự giải đi

Bình luận (0)
 Khách vãng lai đã xóa
DC
Xem chi tiết
HP
10 tháng 8 2016 lúc 9:16

a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)       (1)

Thay a+b=7 và ab=12 vào (1) ta được:

\(\left(a-b\right)^2=7^2-4.12=49-48=1\)

Vậy:.....

b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)     (2)

Thay a-b=6 và ab = 3 vào (2) ta được:

\(\left(a+b\right)^2=6^2+4.3=36+12=48\)

Vậy:....

c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)    (3)

Thay ab = 6 và a+b = -5 vào (3) ta được:

\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)

Vậy......

Bình luận (0)