Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau:
A(4;5) B(1;-1) C(4;-4) D(7; -1).
Tính (theo độ, phút) các góc của tứ giác ABCD bằng máy tính bỏ túi.
Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau:
A(4;5) B(1;-1) C(4;-4) D(7; -1).
Viết phương trình của các đường thẳng AB, BC, CD và DA.
Phương trình của đường thẳng AB có dạng: y = ax + b.
Do phương trình đi qua A(4;5) và B(1; -1) nên ta có:
5 = a.4 + b (1)
-1 = a.1 + b (2)
Trừ từng vế của (1) và (2), ta có: 6 = 3a ⇒ a = 2.
Thay a = 2 và (1) để tìm b, ta có 5 = 2.4 + b ⇒ b = -3.
Vậy phương trình đường thẳng AB là: y = 2x – 3.
Làm tương tự như trên, ta có:
Phương trình đường thẳng BC là: y = -x.
Phương trình đường thẳng CD là: y = x – 8.
Phương trình đường thẳng DA là: y = -2x + 13.
Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.
⇒ ABCD là hình bình hành.
⇒ hình bình hành ABCD là hình chữ nhật.
⇒ AB = AD ⇒ Hình chữ nhật ABCD là hình vuông (ĐPCM).
Trên mặt phẳng tọa độ Oxy cho ba điểm A, B, C có tọa độ như sau: A(7;7), B(2;5), C(5;2). Hãy viết phương trình của các đường thẳng AB, BC và CA.
* Gọi phương trình đường thẳng AB là y = ax + b.
Tọa độ các điểm A, B phải thỏa mãn phương trình y = ax + b nên ta có:
Vậy phương trình của đường thẳng AB là y = 2/5x + 21/5.
*Gọi phương trình của đường thẳng BC là y = a’x + b’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng BC là y = -x + 7.
*Gọi phương trình của đường thẳng AC là y = a’’x + b’’.
Tương tự như trên ta có:
Vậy phương trình của đường thẳng AC là y = 5/2x - 21/2.
Trên mặt phẳng tọa độ Oxy cho hàm số y = -2x + 4 có đồ thị là đường thẳng (d).
a, Tìm tọa độ giao điểm của đường thẳng (d) với hai trục tọa độ.
b, Tìm trên (d) điểm có hoành độ bằng tung độ.
a: Khi x=0 thì y=4
Khi y=0 thì -2x+4=0
hay x=2
b: Gọi điểm cần tìm là A(x;x)
Thay y=x vào y=-2x+4, ta được:
x=-2x+4
=>x=4
Vậy: Điểm cần tìm là A(4;4)
trên mặt phẳng tọa độ oxy cho A (5;-3) B(2;4) C(1;5) .tìm tọa độ điểm D sao cho ABCD là hình bình hành
\(\overrightarrow{AB}=\left(-3;7\right)\)
\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)
Để ABCD là hbh thì
\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)
Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?
A. A C → ⊥ C B → .
B. Tam giác ABC đều.
C. Tứ giác ABCD là hình vuông.
D. Tứ giác ABCD không nội tiếp đường tròn.
Ta có
A B → = 1 ; 7 ⇒ A B = 1 2 + 7 2 = 5 2 B C → = − 7 ; 1 ⇒ B C = 5 2 C D → = − 1 ; − 7 ⇒ C D = 5 2 D A → = 7 ; − 1 ⇒ D A = 5 2 ⇒ A B = B C = C D = D A = 5 2 .
Lại có: A B → . B C → = 1 − 7 + 7.1 = 0 nên A B ⊥ B C .
Từ đó suy ra ABCD là hình vuông.
Chọn C.
Trong mặt phẳng tọa độ Oxy, cho điểm C(2; -5) và đường thẳng D:3x-4y+4=0. Trên đường thẳng D hai điểm A và B đối xứng nhau qua điểm I 2 ; 5 2 sao cho diện tích tam giác ABC bằng 15. Tìm tọa độ điểm A biết điểm B có hoành độ dương.
A. A(8; 7)
B. A(4; 4)
C. A(0; 1)
D. A(-4; -2
Trong mặt phẳng tọa độ Oxy, cho ba điểm A B 2; 4 , 1;0 và C2;2 . a) Tìm tọa độ điểm D sao cho ABCD là hình bình hành. b) Tìm tọa độ điểm M sao cho AM AB BC 2 . c) Tìm tọa độ điểm N đối xứng với điểm B qua điểm C. d) Tìm tọa độ điểm P nằm trên trục hoành sao cho A C P , , thẳng hàng.
a: A(2;4); B(1;0); C(2;2)
vecto AB=(-1;-4)
vecto DC=(2-x;2-y)
Vì ABCD là hình bình hành nên vecto AB=vecto DC
=>2-x=-1 và 2-y=-4
=>x=3 và y=6
c: N đối xứng B qua C
=>x+1=4 và y+0=4
=>x=3 và y=4
a: A(2;4); B(1;0); C(2;2)
vecto AB=(-1;-4)
vecto DC=(2-x;2-y)
Vì ABCD là hình bình hành nên vecto AB=vecto DC
đây nhé bạn
=>2-x=-1 và 2-y=-4
=>x=3 và y=6
c: N đối xứng B qua C
=>x+1=4 và y+0=4
=>x=3 và y=4
Trên mặt phẳng tọa độ Oxy cho bốn điểm A, B, C, D có tọa độ nguyên như sau :
A( 4; 5) B (1; -1) C ( 4; -4) D (7; -1)
a) Viết phương trình của các đường thẳng AB, BC, CD, DA
b) Tính (theo độ, phút) các góc của tứ giác ABCD bằng máy tính bỏ túi
Lời giải
Tổng quát
trong mặt phẳng tọa Oxy Đường thẳng có phương trình
y=a x +b
.........Vấn đề ta phải đi xác định các hệ số : a,b
a)
a.1) đi qua A;B
a,b thủa mãn hệ phương trình
\(\left\{{}\begin{matrix}4a+b=5\\a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\) \(\Rightarrow\left(AB\right)d_1:y=2x-3\)
a.2) đi Qua BC
a,b thủa mãn hệ phương trình
\(\left\{{}\begin{matrix}4a+b=-4\\a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\) \(\Rightarrow\left(BC\right)d_2:y=-x\)
a.3) đi qua CD
a,b thủa mãn hệ phương trình
\(\left\{{}\begin{matrix}4a+b=-4\\7a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-8\end{matrix}\right.\) \(\Rightarrow\left(CD\right)d_3:y=x-8\)
a.4) đi qua DA
a,b thủa mãn hệ phương trình
\(\left\{{}\begin{matrix}4a+b=5\\7a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=13\end{matrix}\right.\)\(\Rightarrow\left(DA\right)d_4:y=-2x-13\)
b)việc sử dụng máy tính ==> suy ra ra góc --> cái đó quá tầm thường rồi.
Mấu chốt vấn Vấn đề biết ý nghĩa hệ số "a" => ra tất cả
ý nghĩa hệ số a vẫn có vị rất quan trọng trong tọa độ phẳng (tương đương sức f(1) trong phương trình đại số )
nhiều bài toán biết cách vận dụng nó -->bài toán trở lên quá đơn giải --> dẫn đến bất ngờ