Giải các phương trình bằng cách đưa về dạng phương trình tích: (x - 2 ) + 3( x 2 – 2) = 0
Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích: 2 x 2 + 5x + 3 = 0
2 x 2 + 5x + 3 = 0 ⇔ 2 x 2 + 2x + 3x + 3 = 0
⇔ 2x(x + 1) + 3(x + 1) = 0 ⇔ (2x + 3)(x + 1) = 0
⇔ 2x + 3 = 0 hoặc x + 1 = 0
2x + 3 = 0 ⇔ x = -1,5
x + 1 = 0 ⇔ x = -1
Vậy phương trình có nghiệm x = -1,5 hoặc x = -1
Giải các phương trình bậc hai sau đây bằng cách đưa về dạng phương trình tích: x 2 – 3x + 2 = 0
x 2 – 3x + 2 = 0 ⇔ x 2 – x – 2x + 2 = 0
⇔ x(x – 1) – 2(x – 1) = 0 ⇔ (x – 2)(x – 1) = 0
⇔ x – 2 = 0 hoặc x – 1 = 0
x – 2 = 0 ⇔ x = 2
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x= 2 hoặc x = 1
Giải các phương trình sau đây bằng cách đưa về dạng phương trình tích :
a) \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)
b) \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
giải các phương trình sau bằng cách đưa về phương trình tích
a) x^2+10x+25-4x(x+5)=0
b) (4x-5)^2-2(16x^2-25)=0
Tham khảo bài này :
(3x+1)(7x+3)=(5x-7)(3x+1)
<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0
<=> (3x+1)(7x+3-5x+7)=0
<=> (3x+1)(2x+10)=0
<=> 2(3x+1)(x+5)=0
=> 3x+1=0 hoặc x+5=0
=> x= -1/3 hoặc x=-5
Vậy x = -1/3 hoặc x = -5
\(a,x^2+10x+25-4x\left(x+5\right)=0.\)
\(\Leftrightarrow\left(x+5\right)^2-4x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\5-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
\(b,\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-5\right)^2-2\left(4x+5\right)\left(4x-5\right)=0\)
\(\Leftrightarrow-\left(4x-5\right)\left(4x+15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}}\)
Giải các phương trình sau bằng cách đưa về phương trình tích x + 1 3 –x +1 = (x -1)(x -2)
Ta có: x + 1 3 –x +1 = (x -1)(x -2)
⇔ x 3 +3 x 2 +3x +1 –x +1 = x 2 -2x –x +2
⇔ x 3 +2 x 2 +5x = 0 ⇔ x( x 2 + 2x + 5) =0
⇔ x =0 hoặc x 2 +2x +5 =0
Giải phương trình x 2 +2x +5 =0
∆ ’ = 1 2 - 1.5 = 1 - 5 = -4 < 0 ⇒ phương trình vô nghiệm
Vậy phương trình đã cho có 1 nghiệm : x=0
Giải các phương trình bằng cách đưa về dạng phương trình tích: x 2 – 5 = (2x - 5 )(x + 5 )
x 2 – 5 = (2x - 5 )(x + 5 )
⇔ (x + 5 )(x - 5 ) = (2x - 5 )(x + 5 )
⇔ (x + 5 )(x - 5 ) – (2x - 5 )(x + 5 ) = 0
⇔ (x + 5 )[(x - 5 ) – (2x - 5 )] = 0
⇔ (x + 5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0
x + 5 = 0 ⇔ x = - 5
x = 0 ⇔ x = 0
Vậy phương trình có nghiệm x = - 5 hoặc x = 0.
Biết x = - 2 là một trong các nghiệm của phương trình: x 3 + a x 2 - 4 x - 4 = 0 . Với a tìm được ở câu a, tìm các nghiêm còn lại của phương trình bằng cách đưa phương trình đã cho về dạng phương trình tích.
Với a = 1, ta có phương trình: x 3 + a x 2 - 4 x - 4 = 0
⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2 – 4)(x + 1) = 0
⇒ (x + 2)(x – 2)(x + 1) = 0
⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0
x + 2 = 0 ⇒ x = -2
x – 2 = 0 ⇒ x = 2
x + 1 = 0 ⇒ x = -1
Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.
1. giải phương trình tích:
a) \(\left(x+3\right)\left(x^2+2021\right)=0\)
\(\)2. giải các phương trình sau bằng cách đưa về phương trình tích:
b) \(x\left(x-3\right)+3\left(x-3\right)=0\)
c) \(\left(x^2-9\right)+\left(x+3\right)\left(3-2x\right)=0\)
d) \(3x^2+3x=0\)
e) \(x^2-4x+4=4\)
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
Bài 1:
a) Ta có: \(\left(x+3\right)\left(x^2+2021\right)=0\)
mà \(x^2+2021>0\forall x\)
nên x+3=0
hay x=-3
Vậy: S={-3}
Bài 2:
b) Ta có: \(x\left(x-3\right)+3\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy: S={3;-3}
giải các phương trình sau bằng cách đưa về phương trình tích
3x^3-3x^2-6x=0
3x3 - 3x2- 6x = 0
x ( 3x2 - 3x - 6 ) = 0
x [ 3x2 + 3x - 6x - 6 ] = 0
x [ 3x ( x + 1 ) - 6 ( x + 1 ) ] = 0
x ( 3x - 6 ) ( x + 1 ) = 0
<=> x = 0 hoặc 3x - 6 = 0 hoặc x + 1 = 0
1) x = 0
2) 3x - 6 = 0 <=> x = 2
3) x + 1 = 0 <=> x = -1
Vậy taaph nghiệm của phương trình đã cho S={0 : -1 : 2 }
\(3x^3-3x^2-6x=0\)
\(3x^3-6x^2+3x^2-6x=0\)
\(3x^2.\left(x-2\right)+3x\left(x-2\right)=0\)
\(\left(3x^2+3x\right)\left(x-2\right)=0\)
\(3x\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow3x=0\) \(\Rightarrow x=0\)hoặc \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)