Những câu hỏi liên quan
TQ
Xem chi tiết
NT
13 tháng 11 2023 lúc 19:04

a: \(F\left(3\right)=3\left(3-2\right)=3\cdot1=3\)

\(\left[F\left(\dfrac{2}{3}\right)\right]^2=\left[\dfrac{2}{3}\cdot\left(\dfrac{2}{3}-2\right)\right]^2\)

\(=\left[\dfrac{2}{3}\cdot\dfrac{-4}{3}\right]^2=\left(-\dfrac{8}{9}\right)^2=\dfrac{64}{81}\)

\(G\left(-\dfrac{1}{2}\right)=-\left(-\dfrac{1}{2}\right)+6=6+\dfrac{1}{2}=\dfrac{13}{2}\)

b: F(x)=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

c: F(a)=G(a)

=>\(a\left(a-2\right)=-a+6\)

=>\(a^2-2a+a-6=0\)

=>\(a^2-a-6=0\)

=>(a-3)(a+2)=0

=>\(\left[{}\begin{matrix}a-3=0\\a+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=3\\a=-2\end{matrix}\right.\)

Bình luận (0)
CM
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
H24
2 tháng 11 2019 lúc 15:58

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|\)

a) Ta có: \(\left|x\right|=\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)

+) Với \(x=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\left|\frac{1}{2}-2015\right|+\left|\frac{1}{2}+2016\right|=2\)

+) Với \(x=-\frac{1}{2}\)

\(f\left(-\frac{1}{2}\right)=\left|-\frac{1}{2}-2015\right|+\left|-\frac{1}{2}+2016\right|=0\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
2 tháng 11 2019 lúc 19:30

c) Áp dụng BĐT |x| + |y| \(\ge\)|x + y|, ta được:

\(f\left(x\right)=\left|x-2015\right|+\left|x+2016\right|=\left|2015-x\right|+\left|x+2016\right|\)

\(\ge\left|\left(2015-x\right)+\left(x+2016\right)\right|=\left|4031\right|=4031\)

(Dấu "="\(\Leftrightarrow\left(2015-x\right)\left(x+2016\right)\ge0\)

TH1: \(\hept{\begin{cases}2015-x\ge0\\x+2016\ge0\end{cases}}\Leftrightarrow-2016\le x\le2015\)

TH2: \(\hept{\begin{cases}2015-x\le0\\x+2016\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le-2016\end{cases}}\left(L\right)\))

Vậy \(f\left(x\right)_{min}=4031\Leftrightarrow-2016\le x\le2015\)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
16 tháng 8 2017 lúc 5:44

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 4 2019 lúc 6:08

Đáp án B

Bình luận (0)
AV
Xem chi tiết
TH
Xem chi tiết
NT
2 tháng 12 2023 lúc 19:56

a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)

\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)

\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)

Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)

nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R

b: f(x)=0

=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)

=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)

=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)

Bình luận (0)
ND
Xem chi tiết