Tìm giá trị của m để tất cả các điểm cực trị của đồ thị hàm số
y = - x 4 + 2 m x 2 - 4 nằm trên các trục tọa độ.
A. m ∈ - ∞ ; 0 ∪ 2
B. m ∈ ( - ∞ ; 0 ] ∪ 2
C. m ∈ - ∞ ; 0 ∪ - 2
D. m = ± 2
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 m x 2 + ( m - 1 ) x + 2 có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số có hoành độ dương
A. 0 ≤ m ≤ 1
B. m ≥ 1
C. m ≥ 0
D. m > 1
Chọn D
Ta có y ' = 3 x 2 - 6 m x + m - 1
Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0 có hai nghiệm phân biệt
Điều này tương đương
Hai điểm cực trị có hoành độ dương
Vậy các giá trị cần tìm của m là m >1
Cho hàm số y=f(x) có đồ thị như hình vẽ.
Tìm tập hợp tất cả các giá trị của m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m < 2.
B. m > 2.
C. m > − 2.
D. m < − 2.
Đáp án D
Dựa vào đồ thị hàm số, dễ thấy hàm số f x = x 3 + 3 x 2 − 1
Xét hàm số f x + m = x + m 3 + 3 x + m − 1 với x ∈ ℝ
Chú ý : Cực trị là điểm làm y' đổi dấu và f x = x = x 2 ⇒ f ' x = 2 x 2 x 2 = x x
Do đó f x + m = 3 x + m x + m + 2 . x x .
Khi đó y = f x + m có 5 điểm cực trị x + m = 0 x + m + 2 = 0 có 4 nghiệm phân biệt x = − m x = − 2 − m có 4 nghiệm − m > 0 − 2 − m > 0 ⇔ m < − 2
Cách 2: Đồ thị hàm số y = f x + m được suy ra từ
y = f x → y = f x + m → y = f x + m .
Đồ thị hàm số muốn có 5 điểm cực trị khi ở bước thứ 1ta dịch chuyển đồ thị sang phải nhiều hơn 2 đơn vị m < − 2
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > − 1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = f x + m có 5 điểm cực trị.
A. m ≤ − 1
B. m < − 1
C. m ≥ − 1
D. m > 1
Đáp án B.
Hàm số y = f x + m là một hàm số chẵn nên đồ thị đối xứng qua trục Oy. Mặt khác y = f x + m = f x + m ∀ x ≥ 0 . Ta có phép biến đổi từ đồ thị hàm số y = f x thành đồ thị hàm số y = f x + m :
* Nếu m > 0:
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang trái m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
* Nếu m=0 :
- Bước 1: Tịnh tiến đồ thị hàm số y = f x sang phải m đơn vị.
- Bước 2: Xóa phần nằm bên trái Oy của đồ thị thu được ở Bước 1.
- Bước 3: Lấy đối xứng đồ thị thu được ở Bước 2 qua Oy.
Quan sát ta thấy đồ thị hàm số y = f x có 2 điểm cực trị.
Để đồ thị hàm số y = x + m có 5 điểm cực trị thì nhánh bên phải Oy của đồ thị hàm số y = x + m phải có 2 điểm cực trị => Điểm cực trị của đồ thị hàm số y = f x phải được tịnh tiến sang phải O y ⇒ m < − 1 .
Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x 3 + 2 x 2 + m - 3 x + m có 2 điểm cực trị và điểm M(9;-5) nằm trên đường thẳng đi qua hai điểm cực trị của đồ thị hàm số.
A. m = 3
B. m = 2
C. m = -5
D. m = -1
Cho hàm số y=f(x) có đồ thị như hình vẽ bên dưới: Tìm tất cả các giá trị của tham số m để đồ thị hàm số h ( x ) = f 2 ( x ) + f ( x ) + m có đúng 3 điểm cực trị.
A. m ≤ 1
B. m > 1 4
C.m<1
D. m ≥ 1 4
Tìm tất cả các giá trị thực của tham số m để hàm số y = x 3 - 3 m x 2 + 3 ( m 2 - 1 ) x - m 3 + m có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O
A. m = - 3 - 2 2 h o ặ c m = - 1
B. m = - 3 + 2 2 h o ặ c m = - 1
C. m = - 3 + 2 2 h o ặ c m = - 3 - 2 2 .
D. m = - 3 + 2 2
Chọn C
Ta có y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )
Hàm số (1) có cực trị thì PT y ' = 0 có 2 nghiệm phân biệt
⇔ x 2 - 2 m x + m 2 - 1 = 0 có 2 nhiệm phân biệt
Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu B ( m + 1 ; - 2 m )
Ta có O A = 2 O B ⇔ m 2 + 6 m + 1 = 0
Cho hàm số y = f(x) = x 4 - 2 ( m - 1 ) x 2 + 1 . Tìm tất cả các giá trị của tham số m để đồ thị hàm số có 3 điểm cực trị lập thành một tam giác vuông.
A. m = -1.
B. m = 0.
C. m = 1.
D. m = 2.
Chọn D.
TXĐ: D = R.
Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt ⇔ m -1 > 0 ⇔ m > 1(*)
3 điểm cực trị của đồ thị hàm số là: A(0;1),
Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng
Ta có
Kết hợp với điều kiện (*) => m = 2
Làm theo bào toán trắc nghiệm như sau:
Hàm số đã cho có 3 điểm cực trị khi ab < 0
Chỉ có đáp án D thỏa mãn.