Cho B= 1/4^2 +1/6^2+ .....+1/2006^2
Chứng tỏ B< 334/2007
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho B = 1/4^2 +1/6^2+1/8^2 +...+1/2006^2 chứng minh B <334/2007
Help me!!!!!!!!!!!!!!
cho B = 1/4^2 + 1/6^2 +1/ 8^2 + ... + 1/2006^2. Chứng minh B< 334/2007
Cho B=\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{2006^2}\). Chứng minh : B<\(\dfrac{334}{2007}\)
=>B=\(\dfrac{1}{4.4}+\dfrac{1}{6.6}+\dfrac{1}{8.8}+...+\dfrac{1}{2006.2006}\)
=>B<\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\)
=>B<\(\dfrac{2}{2}.\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2005.2007}\right)\)
=>B<\(\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2005.2007}\right)\)
=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2005}-\dfrac{1}{2007}\right)\)
=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{5}+...+\dfrac{1}{2005}-\dfrac{1}{2005}-\dfrac{1}{200}\right)\)(xin lỗi, đoạn cuối (chỗ 200 í )là 2007 nhá
=>B<\(\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{2007}\right)\)
=>B<\(\dfrac{1}{2}.\dfrac{668}{2007}\)
=>B<\(\dfrac{1.668}{2.2007}\)
=>B<\(\dfrac{1.668:2}{2.2007:2}\)
=>B<\(\dfrac{334}{2007}\)
Tick cho tôi nha :D
Cho \(B=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+..................+\dfrac{1}{2006^2}\). Chứng minh rằng \(B< \dfrac{334}{2007}\)
Help me!!!!!!!!!!!!!!!
Cho B =\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+......+\frac{1}{2006^2}\) Chứng minh : B < \(\frac{334}{2007}\)
Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)
\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)
Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)
\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)
\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)
Vậy:.....
1/6^2 < 1/5.6?????????
Cho a/b=c/d chứng tỏ (2005.a-2006.b)/(2006.c-2007.d)=(2005.c-2006.d)/(2006.a-2007.b)
so sánh: 1/4^2+1/6^2+1/8^2+...+1/2006^2 với 334/2007
Cho a/b=c/d chứng tỏ (2005.a-2006.b)/(2006.c-2007.d)
Cho B = \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2006^2}\)
Chứng minh rằng B <\(\frac{334}{2007}\)
mik sẽ trả lời pạn sau nhé ..sorry mik pạn ti......
Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry