Những câu hỏi liên quan
PB
Xem chi tiết
CT
29 tháng 7 2019 lúc 16:29

Đáp án B

Bình luận (0)
DH
Xem chi tiết
TC
1 tháng 4 2022 lúc 17:33

giải bằng Bunhiaskopki nha bạn, search gg

Bình luận (0)
XO
1 tháng 4 2022 lúc 17:34

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
NL
23 tháng 7 2021 lúc 13:57

\(A^2=\left(\sqrt{x+1}+\sqrt{y+2}\right)^2\le2\left(x+1+y+2\right)=36\)

\(\Rightarrow A\le6\)

\(A_{max}=6\) khi \(\left\{{}\begin{matrix}x=8\\y=7\end{matrix}\right.\)

Bình luận (0)
BB
Xem chi tiết
BB
Xem chi tiết
ND
Xem chi tiết
BH
Xem chi tiết
TD
3 tháng 5 2020 lúc 15:14

gọi m là 1 giá trị của biểu thức P, Khi đó hệ phương trình sau phải có nghiệm đối với x,y

\(\hept{\begin{cases}\frac{x^2}{9}+\frac{y^2}{16}=36\left(1\right)\\x-y+2004=m\left(2\right)\end{cases}}\)

Từ ( 2 ) suy ra y = x + 2004 - m

Thế vào ( 2 ),ta được : \(16x^2+9\left(x+2004-m\right)^2=144.36=5184\)

\(\Leftrightarrow25x^2+18\left(2004-m\right)x+9\left(2004-m\right)^2-5184=0\)( 3 )

Hệ PT có nghiệm khi PT ( 3 ) có nghiệm 

\(\Rightarrow\Delta'=\left[9\left(2004-m\right)\right]^2-25\left[9\left(2004-m\right)^2-5184\right]\ge0\)

\(\Leftrightarrow\left(2004-m\right)^2\le900\Leftrightarrow-30\le2004-m\le30\)

\(\Leftrightarrow1974\le m\le2034\)

từ đó tìm được GTNN của P là 1974 khi \(x=\frac{-54}{5};y=\frac{96}{5}\)

GTLN của P là 2034 khi \(x=\frac{54}{5};y=\frac{-96}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa