1x2x3...9-1x2x3...8-1x2x3...82
Đáp số và cách làm
1x2x3...x9-1x2x3...x9-1x2x3...x7x8^2
1x2+1x2x3+1x2x3x4+1x2x3x4x5+....+1x2x3...99x100
a) (102+112+122) : (132+142)
b) 1x2x3....x9-1x2x3...x8-1x2x3....x7x82
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
1x2x3
1 x 2 x 3 = 6 nha bạn !
chúc bạn học tốt nhé !
hihi
1x2x3
1 x 2 x 3 = 2 x 3
= 6
k mik nha , mik k lại !!!!!!!!!!!!!!!!!!!!!!!!!!
So sánh G=1x2x3+2x4x6+4x8x12 và H=1x3x5+2x6x10+4x12x20 ( lưu ý : ko tính kết quả mà so sánh bằng cách tách các thừa số ra )
Ta có:
G = 1.2.3 + 1.2.2.2.3.2 + 4.1.4.2.4.3 = 1.2.3.( 1 + 2.2.2 + 4.4.4 )
H = 1.3.5 +1.2.2.2.3.2 + 4.1.4.2.4.3 = 1.3.5. ( 1+ 2.2.2 +4.4.4 )
Vì 1.2.3 < 1.3.5 nên G < H
1x2x3...x24x25
1x2x3+2x3x4+.........+2011x2012x2013=?
Gọi A = 1.2.3 + 2.3.4 + ................... + 2011.2012.2013
4A = 1.2.3.4 + 2.3.4.4 + ...................... + 2011.2012.2013.4
4A = 1.2.3.4 + 2.3.4.(5 - 1) +..................... + 2011.2012.2013.(2014 - 2010)
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + .................... + 2011.2012.2013.2014 - 2010.2011.2012.2013
4A = 2011.2012.2013.2014
A = \(\frac{2011.2012.2013.2014}{4}=2011.503.2013.2014=..........\)