Gọi M,N lần lượt là các điểm biểu diễn số phức z 1 , z 2 . Biết ( M O N ^ = 60 0 ,| z 1 |=2,| z 2 |=6. Tìm phần thực của số phức u = z 1 z 2 .
A. 1 6
B. - 3 6
C. - 1 6
D. 3 6
\(M\left(1;1\right)\) ; \(N\left(2;3\right)\)
Gọi \(w=x+yi\Rightarrow Q\left(x;y\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{MN}=\left(1;2\right)\\\overrightarrow{MQ}=\left(x-1;y-1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MN}+3\overrightarrow{MQ}=\left(3x-2;3y-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow w=\dfrac{2}{3}+\dfrac{1}{3}i\)
Gọi M và M ’ lần lượt là các điểm biểu diễn cho các số phức z và - z ¯ . Xác định mệnh đề đúng
A. M và M ’ đối xứng nhau qua trục hoành
B. Ba điểm O, M và M ’ thẳng hàng.
C. M và M ’ đối xứng nhau qua gốc tọa độ
D. M và M ’ đối xứng nhau qua trục tung.
Gọi M và M' lần lượt là các điểm biểu diễn cho các số phức z và z ¯ . Xác định mệnh đề đúng
A.M và M' đối xứng nhau qua trục hoành.
B. M và M' đối xứng nhau qua trục tung.
C. M và M' đối xứng nhau qua gốc tọa độ.
D. Ba điểm O,M và M' thẳng hàng.
Cho số phức z và số phức liên hợp của nó z ¯ có điểm biểu diễn là M, M’. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N’. Biết rằng 4 điểm M, N, M’, N’ tạo thành hình chữ nhật. Tìm giá trị nhỏ nhất của biểu thức |z + 4i -5|
A . 1 2
B . 2 5
C . 5 34
D . 4 13
Đáp án A
Giả sử
Ta có M(a;b) và M'(a;-b)
Khi đó
Suy ra và
Do 4 điểm M, N, M’, N’ tạo thành hình thang cân nhận Ox làm trục đối xứng nên 4 điểm đó lập thành hình chữ nhật
Với a = -b, ta có
Dấu bằng xảy ra khi
Với ta có
Vậy
Cho số phức z và số phức liên hợp của nó z có điểm biểu diễn là M, M’. Số phức z . ( 4 + 3 i ) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N’. Biết rằng 4 điểm M, N, M’, N’ tạo thành hình chữ nhật. Tìm giá trị nhỏ nhất của biểu thức | z + 4 i - 5 | .
A. 1 2
B. 2 5
C. 5 34
D. 4 13
Xét số phức z và số phức liên hợp của nó có điểm biểu diễn là M, M'. Số phức z(4+3i) và số phức liên hợp của nó có điểm biểu diễn lần lượt là N, N'. Biết rằng M, M', N, N' là bốn đỉnh của hình chữ nhật. Tìm giá trị nhỏ nhất của z + 4 i - 5 .
Cho số phức z và w biết w = z 1 - i và M, N lần lượt là các điểm biểu diễn z, w trong Oxy. Biết diện tích ∆ OMN bằng 1. Tính |z|.
A. |z| = 1 2
B. |z| = 1
C. |z| = 2
D. |z| = 2
Cho số phức z thỏa mãn z + 3 i + z - 3 i = 10 . Gọi M 1 ; M 2 lần lượt là điểm biểu diễn số phức z có môđun lớn nhất và nhỏ nhất. Gọi M là trung điểm của M 1 M 2 , M(a, b) biểu diễn số phức w, tổng a + b nhận giá trị nào sau đây?
A. 7 2
B. 5
C. 4
D. 9 2
Gọi M,N lần lượt là điểm biểu diễn hình học các số phức z=2-i và w=4+5i. Tọa độ trung điểm I của đoạn thẳng MN là
A..
B..
C..
D. .
Cho số phức z = 2 + 3i. Gọi M là điểm biểu diễn số phức z, N là điểm biểu diễn số phức z, N và P là điểm biểu diễn số phức (1+i)z. Khẳng định nào sau đây là khẳng định sai?
A. M(2;3)
B. N(2;-3)
C. P(1;5)
D. |z| = 13