Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 3 2019 lúc 16:11

Đáp án D

Điều kiện 40 < x < 60

Vậy x cần tìm theo yêu cầu đề là các số nguyên dương chạy từ 41 đến 59; trừ giá trị 50. Có tất cả 18 giá trị thỏa mãn.

Bình luận (0)
NA
Xem chi tiết
JP
Xem chi tiết
DD
25 tháng 2 2022 lúc 22:33

undefined

Bình luận (0)
H24
25 tháng 2 2022 lúc 22:35

\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)

\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)

Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)

\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)

Bmin=-168\(\Leftrightarrow\)m=-16

 

Bình luận (0)
NT
Xem chi tiết
NT
18 tháng 3 2021 lúc 21:33

a)

Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)

\(=\left(-2m-4\right)^2-4\left(m-3\right)\)

\(=4m^2+16m+16\ge0\forall x\)

Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m

Áp dụng hệ thức Viet, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)

Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)

\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)

\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)

\(\Leftrightarrow4m-12+4m+8+1=8\)

\(\Leftrightarrow8m=8+12-8-1\)

\(\Leftrightarrow8m=11\)

hay \(m=\dfrac{11}{8}\)

Bình luận (0)
H24
18 tháng 3 2021 lúc 21:42

Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh 

b) 

Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)

\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

  Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)

  Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)

 

Bình luận (0)
LD
Xem chi tiết
H24
Xem chi tiết
NM
6 tháng 5 2022 lúc 13:23

cái này tínhd đen ta r áp dụng hệ thức vi ét 

Bình luận (0)
NM
6 tháng 5 2022 lúc 13:24

cái biêủ thức đề bài biến đổi để kết hợp với pt tổng trong Viet ra hệ pt tìm ra x1 x2 ròi that vào pt tích trong viet

 

Bình luận (0)
YK
Xem chi tiết
MH
5 tháng 3 2023 lúc 21:27

Ta có:

\(\text{∆}'=\left(m+1\right)^2-\left(m^2+m\right)\)

\(=m^2+2m+1-\left(m^2+m\right)=m+1\)

Để phương trình có 2 nghiệm phân biệt x1, x2

\(\Leftrightarrow\text{∆}'>0\Leftrightarrow m+1>0\Leftrightarrow m>-1\)

Áp dụng hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+m\end{matrix}\right.\)

Ta có: \(\dfrac{1}{x_1^2}+\dfrac{1}{x^2_2}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{x_1^2+x^2_2}{x_1^2.x_2^2}=\dfrac{1}{8}\)

\(\Leftrightarrow8[\left(x_1+x_2\right)^2-2x_1.x_2]=x_1^2.x_2^2\)

\(\Leftrightarrow8[[2\left(m+1\right)]^2-2\left(m^2+m\right)]=\left(m^2+m\right)^2\)

\(\Leftrightarrow8\left[4m^2+8m+4-2m^2-2m\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow\)\(8\left[2m^2+6m+4\right]=m^4+2m^3+m^2\)

\(\Leftrightarrow m^4+2m^3-15m^2-48m-32=0\)

\(\Leftrightarrow\left(m+1\right)\left(m^3+m^2-16m-32\right)=0\)

Vì m>-1

\(\Leftrightarrow m^3+m^2-16m-32=0\)

Đến đây nghiêm xấu bạn xem lại đề hoặc có thể sử dụng CTN Cardano

Bình luận (0)
PT
Xem chi tiết
PT
11 tháng 4 2015 lúc 23:08

theo đl VI-ET: X1 + X2 =2 VÀ X1.X2 = m -8.

giải hệ phương trình : 3x1 -x2 = 0 và x1 +x2 =2

ta tìm được x1 =1/2     và x2 =3/2

thay x1 , x2 vào x1.x2 = m-8

=> m =35/4

Bình luận (0)
NT
1 tháng 5 2016 lúc 16:41

vi ét bạn

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 8 2018 lúc 17:04

Đáp án B

Ta có log(x + 2y) = log x + log y

<=> log 2 (x+2y) = log 2xy

<=> 2 (x+2y) = 2xy (*).

Đ ặ t   a = x > 0 b = 2 y > 0 , khi đó

* ⇔ 2 a + b = a b

và  P = a 2 1 + b + b 2 1 + a ≥ a + b 2 a + b + 2

Lại có  a b ≤ a + b 2 4 ⇒ 2 a + b ≤ a + b 2 4 ⇔ a + b ≥ 8 .

Đặt t = a + b, do đó

P ≥ f t = t 2 t + 2 .

X é t   h à m   s ố   f t = t 2 t + 2 t r ê n   [ 8 ; + ∞ )

c ó   f ' t = t 2 + 2 t t + 2 2 > 0 ; ∀ ≥ 8

Suy ra f(t) là hàm số đồng biến trên  [ 8 ; + ∞ )

Vậy gía trị nhỏ nhất của biểu thức P là  32 5 .

Bình luận (0)
H24
Xem chi tiết
HM
26 tháng 8 2023 lúc 14:17

\(a,\left(\dfrac{1}{4}\right)^{x-2}=\sqrt{8}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^{2x-4}=\left(\dfrac{1}{2}\right)^{-\dfrac{3}{2}}\\ \Leftrightarrow2x-4=-\dfrac{3}{2}\\ \Leftrightarrow2x=\dfrac{5}{2}\\ \Leftrightarrow x=\dfrac{5}{4}\)

\(b,9^{2x-1}=81\cdot27^x\\ \Leftrightarrow3^{4x-2}=3^{4+3x}\\ \Leftrightarrow4x-2=4+3x\\ \Leftrightarrow x=6\)

Bình luận (0)
HM
26 tháng 8 2023 lúc 14:23

c, ĐK: \(x-2>0\Rightarrow x>2\)

\(2log_5\left(x-2\right)=log_59\\ \Leftrightarrow log_5\left(x-2\right)^2=log_59\\ \Leftrightarrow\left(x-2\right)^2=3^2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 5.

d, ĐK: \(x-1>0\Leftrightarrow x>1\)

\(log_2\left(3x+1\right)=2-log_2\left(x-1\right)\\ \Leftrightarrow log_2\left(3x+1\right)\left(x-1\right)=2\\ \Leftrightarrow3x^2-2x-1=4\\ \Leftrightarrow3x^2-2x-5=0\\ \Leftrightarrow\left(3x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm \(x=\dfrac{5}{3}\)

Bình luận (0)