Cho hàm số liên tục trên R thỏa mãn f x = f - 2 = 0 . Biết đồ thị hàm số y = f ' x được cho như hình bên đây. Hàm số y = f 2 x nghịch biến trên khoảng nào dưới đây?
A. - 1 ; 3 2
B. (-2;-1)
C. (-1;1)
D. (1;2)
Cho hàm số y=f (x) liên tục trên R thỏa mãn l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 . Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là:
A. 2
B. 1
C. 3
D. 0
Đáp án A
Phương pháp:
Nếu l i m x → + ∞ y = a hoặc l i m x → - ∞ y = a thì y = a là TCN của đồ thị hàm số y = f(x)
Nếu l i m x → b + y = ∞ hoặc l i m x → b - y = ∞ thì x = b là TCĐ của đồ thị hàm số y = f(x)
Cách giải: Do hàm số liên tục trên R nên đồ thị hàm số không có TCĐ.
l i m x → - ∞ f ( x ) = 0 ; l i m x → + ∞ f ( x ) = 1 → y = 0 và y = 1 là 2 đường TCN của đồ thị hàm số.
Một trong các đồ thị ở hình vẽ là đồ thị của hàm số f(x) liên tục trên R thỏa mãn f ' 0 = 0 , f x < 0 , ∀ x ∈ - 1 ; 2 . Hỏi đó là đó là đồ thị nào?
A. H3.
B. H4
C. H2.
D. H1.
Cho hàm số y= f(x) có đạo hàm liên tục trên R, thỏa mãn 2 f ( 2 x ) + f ( 1 - 2 x ) = 12 x 3 . Tìm phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1
A.
B.
C.
D.
Cho hàm số y=f(x) có đạo hàm liên tục trên ( 0 ; + ∞ ) thỏa mãn f ' ( x ) + f ( x ) x = 4 x 2 + 3 x và f(1)=2. Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x = 2 là x
A. y = 16x+20.
B. y = -16x+20
C. y = -16x-20
D. y = 16x-20.
Cho hàm số y = f(x) có đạo hàm liên tục trên R, thỏa mãn 2f(2x) + f(1 – 2x) = 12x2. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1 là
A. y = 4x - 6
B. y = 2x - 6
C. y = 4x - 2
D. y = 2x + 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)
Đạo hàm 2 vế giả thiết:
\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)
Thay \(x=1\)
\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)
Phương trình tiếp tuyến:
\(y=-2\left(x-2\right)+5=-2x+9\)
Cho hàm số y = f(x) liên tục trên R có đồ thị y = f'(x) như hình vẽ bên. Biết f 1 = 0 . Xác định số điểm cực trị của đồ thị hàm số y = |f(x)|.
A. 5
B. 6
C. 4
D. 3
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Cho đồ thị hàm số y = f(x) có đạo hàm trên R thỏa mãn f(2) = f(-2) = 0 và đồ thị hàm số y = f'(x) có dạng như hình vẽ. Hàm số y = f ( x ) 2 nghịch biến trên khoảng nào trong các khoảng sau?
A. - 1 ; 3 2
B. (-2;-1)
C. (-1;1)
D. (1;2)
Cho hàm số y = f(x) có đạo hàm liên tục trên R đồ thị hàm số y = f’(x) như hình vẽ.
Biết f(2) = –6, f(–4) = –10 và hàm số g(x) = f(x)+ x 2 2 , g(x) có ba điểm cực trị.
Phương trình g(x) = 0?
A. Có đúng 2 nghiệm
B. Vô nghiệm
C. Có đúng 3 nghiệm
D. Có đúng 4 nghiệm
Đáp án B
Phương pháp: Lập bảng biến thiên của g(x) và đánh giá số giao điểm của đồ thị hàm số y = g(x) và trục hoành.
Cách giải:
Xét giao điểm của đồ thị hàm sốy = f’(x) và đường thẳng y = -x ta thấy, hai đồ thị cắt nhau tại ba điểm có hoành độ là: -2;2;4 tương ứng với 3 điểm cực trị của y = g(x).
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy => phương trình g(x) = 0 không có nghiệm