Những câu hỏi liên quan
PB
Xem chi tiết
CT
5 tháng 10 2017 lúc 12:46

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 10 2017 lúc 17:06

Đáp án A.

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 10 2017 lúc 4:29

Đáp án C.

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 12 2018 lúc 13:02

Đáp án C

Bình luận (0)
DH
Xem chi tiết
NL
18 tháng 9 2021 lúc 22:38

Lần lượt trừ pt đầu cho 2 pt dưới:

\(\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)x+\left(a-b\right)y=a-b\\\left(a-c\right)\left(a+c\right)x+\left(a-c\right)y=a-c\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)x+y=1\\\left(a+c\right)x+y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Thế vào pt đầu \(\Rightarrow z=0\)

Bình luận (0)
QL
Xem chi tiết
NL
6 tháng 3 2023 lúc 17:33

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

Bình luận (0)
NL
6 tháng 3 2023 lúc 17:31

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

Bình luận (0)
PN
9 tháng 3 2023 lúc 22:11

→AB=(1;2;3)��→=(1;2;3) ; −−→CD=(1;1;1)��→=(1;1;1)

[−−→AB;−−→CD]=(−1;2;−1)=−(1;−2;1)[��→;��→]=(−1;2;−1)=−(1;−2;1)

Phương trình (P):

1(x−1)−2y+1(z−1)=0⇔x−2y+z−2=0

Bình luận (0)
DA
Xem chi tiết
TN
2 tháng 12 2021 lúc 14:04

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

Bình luận (0)
 Khách vãng lai đã xóa
HM
Xem chi tiết
HM
Xem chi tiết
HN
5 tháng 9 2016 lúc 19:59

Áp dụng hệ thức Vi-et , ta có \(\begin{cases}z_1+z_2=-b\\z_1.z_2=c\end{cases}\)

Bình luận (0)
TD
Xem chi tiết
LK
6 tháng 1 2016 lúc 12:24

Bài này không thể giải được vì không có dữ kiện gì về A, B, C cả, bên trên X, Y, Z còn bên dưới A, B, C thì sao mà giải

Bình luận (0)