Cho các số thực dương x, y thỏa mãn: x + y = 5 4 thì biểu thức S = 4 x + 1 4 y đạt giá trị nhỏ nhất khi x = a y = b thì a.b có giá trị là bao nhiêu?
A. a b = 3 8
B. a b = 25 64
C. a b = 0
D. a b = 1 4
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Cho các số thực dương x, y thỏa mãn: x + y = 5 4 thì biểu thức S = 4 x + 1 4 y đạt giá trị nhỏ nhất khi x = a y = b thì a.b có giá trị là bao nhiêu?
A. a . b = 3 8
B. a . b = 25 64
C. a . b = 0
D. a . b = 1 4
Cho các số thực dương x, y thỏa mãn log x + y x 2 + y 2 ≤ 1 .Giá trị lớn nhất của biểu thức A= 48 ( x + y ) 3 - 156 ( x + y ) 2 + 133 ( x + y ) + 4 là
A. 29.
B. 1369/36.
C. 30.
D. 505/36
Cho x; y là các số thực dương thỏa mãn xy = 4; x ≥ 1 2 ; y ≥ 1 . Tìm giá trị lớn nhất của biểu thức
P = log 1 2 x 3 + log 1 2 y - 1 3
A. - 27 4
B. 0
C. - 4 27
D. -9
Thay y = 4 x vào biểu thức P và biến đổi ta thu được
P = - 9 log 2 2 + 27 log 2 x - 27 .
Do y ≥ 1 nên x ≤ 4 . Suy ra 1 2 ≤ x ≤ 4 . Đặt t = log 2 x , khi đó - 1 ≤ t ≤ 2 .
Xét hàm số f(t0 = - 9 t 2 + 27t - 27; t ∈ - 1 ; 2
Ta có f ' (t) = -18t + 27; f ' (t) = 0 ⇔ t = 3 2
f (-1) = -63; f (2) = -9; f 3 2 = 27 4
Vậy
m a x P = - 27 4 ⇔ x = 2 2 ; y = 2
Đáp án A
Cho các số thực dương x, y, z thỏa mãn x + y + z = 4.Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x+z}{xyz}\)
Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)
\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)
"=" xảy ra khi y = 2 ; x = 1 ; z = 1
Ta có x+y+z=4
=>y=4-x-z
Ta có :x,y,z>0
=>\(x^2>0,z^2>0\)
=>\(x^2z>0,z^2x>0\)
Áp dụng bất đẳng thức cô si với hai số dương \(x^2z\) và z ta có
\(x^2z+z\)>=2\(\sqrt{x^2z.z}\)
<=>\(x^2z+z>=2xz\)
CMTT:\(z^2x+x>=2xz\)
=>\(x^2z+z+z^2x+x>=4xz\)
=>\(x+z>=4xz-x^2z-z^2x\)
=>\(x+z>=xz\left(4-x-z\right)\)
Mà y=4-x-z(cmt)
=>\(x+z>=xyz\)
=>\(\dfrac{x+z}{xyz}>=1\)
hay \(P>=1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x^2z=z\\z^2x=x\\x+y+z=4\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x^2=1\\z^2=1\\x+y+z=4\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=1\\z=1\\1+y+1=4\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=1\\z=1\\y=2\end{matrix}\right.\)
Vậy tại x=1, y=2,z=1 thì P có giá trị nhỏ nhất là 1
Cho x,y là hai số thực dương thỏa. mãn x+y=5 Giá trị nhỏ nhất của biểu thức P=\(\dfrac{4x+y}{xy}-\dfrac{2x-y}{4}\)
Bạn kiểm tra lại đề bài, với biểu thức thế này thì không thể tìm được điểm rơi (nó là nghiệm của 1 pt bậc 4 hệ số rất xấu ko thể giải được)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)
Cho các số thực dương x, y thỏa mãn x+y=1. Tìm GTNN của biểu thức:
M=19/xy +6/(x2+y2) +2018 (x4+y4)