Hàm số y = 4 cos 2 x + 2017 tuần hoàn với chu kỳ:
A. π 2
B. 4 π
C. π
D. 2 π
Khẳng định nào sau đây là sai?
A. Hàm số \(y = \cos x\) có tập xác định là \(\mathbb{R}\)
B. Hàm số \(y = \cos x\) có tập giá trị là [-1;1]
C. Hàm số \(y = \cos x\) là hàm số lẻ
D. Hàm số \(y = \cos x\) tuần hoàn với chu kỳ \(2\pi \)
Ta có: \(y = \cos x\)
\(y\left( { - x} \right) = \cos \left( { - x} \right) = \cos x = y\)
Suy ra hàm số \(y = \cos x\) là hàm số chẵn
Vậy ta chọn đáp án C
Bài 1: Tìm chu kỳ tuần hoàn của hàm số sau:
a) y= cos\(^2\)x
Ta có cos2(x + π) = [-cosx]2 = cos2x
Giả sử tồn tại số T ∈ (0 ; π) thỏa mãn
cos2x = cos2(x + T) với mọi x
⇔ 2cos2x - 1 = 2cos2(x + T) - 1 với mọi x
⇔ cos2x = cos (2x + 2T) với mọi x (1)
(*) : cos2x = cos (2x + 2T)
Thay x = \(\pi\) vào ta được
1 = cos(T + 2π) ⇔ cosT = 1
Do T ∈ (0 ; π) nên cosT ≠ 1.
Vậy x = π không thỏa mãn (*) : cos2x = cos (2x + 2T)
Vậy (1) là mệnh đề sai
Dẫn đến mệnh đề "Giả sử" là sai
Nói cách khác : Không có số T ∈ (0 ; π) thỏa mãn cos2x = cos2(x + T) với mọi x
Tóm lại : T = π là số dương bé nhất thỏa mãn cos2x = cos2(x + T)
nên chu kì của hàm số này là π
Lời giải:
$y=f(x)=\cos ^2x=\frac{\cos 2x+1}{2}$
Hàm này có chu kỳ $T=\frac{2\pi}{|2|}=\pi$
Trong các hàm số sau hàm số nào tuần hoàn với chu kỳ π ?
A. y = sin 2x
B. y = tan 2x
C. y = cos x
D. y = cot x 2
Trong các hàm số sau hàm số nào tuần hoàn với chu kỳ π ?
A. y = sin 2 x
B. y = tan 2 x
C. y = cos x
D. y = c o t x 2
Hàm số y = sin ( π / 2 - x ) + c o t x / 3 là hàm tuần hoàn với chu kì:
A. T = π.
B. T = 2π.
C. T = 3π.
D. T = 6π.
Hàm số y 1 = sin π 2 − x có chu kì T 1 = 2 π − 1 = 2 π
Hàm số y 2 = cot x 3 có chu kì T 2 = π 1 3 = 3 π
Suy ra hàm số đã cho y = y 1 + y 2 có chu kì T = B C N N 2 , 3 π = 6 π .
Vậy đáp án là D.
Trong bốn hàm số (1)y=cos2x, (2)y=sinx, (3)y=tan2x, (4)y=cot4x có mấy hàm số tuần hoàn với chu kì là π
A. 3
B. 2
C. 0
D. 1
Chứng minh rằng các hàm số sau tuần hoàn và tìm chu kì tuần hoàn của chúng :
a, y= sinx
b, y= sinx + cos x
trong các hàm số sau đây , hàm số nào không tuần hoàn
a. y= x.sin x
b. y= cos 2x
c. y=sin(x-x/2)
d. y=1/sin2x
Hàm \(y=x.sinx\) không phải hàm tuần hoàn
Cho các mệnh đề sau
(I) Hàm số f(x) = sin x x 2 + 1 là hàm số chẵn.
(II) Hàm số f(x) = 3sinx + 4cosx có giá trị lớn nhất là 5.
(III) Hàm số f(x) = tanx tuần hoàn với chu kì 2 π .
(IV) Hàm số f(x) = cosx đồng biến trên khoảng (0; π )
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng?
A. 4
B. 2
C. 3
D. 1