Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 11 2017 lúc 17:29

Bình luận (0)
NA
Xem chi tiết
NT
22 tháng 11 2023 lúc 7:50

loading...  loading...  loading...  

Bình luận (2)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 22:40

a) Từ đồ thị ta thấy hàm số xác định trên [-3;7]

+) Trên khoảng (-3; 1): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (-3; 1).

+) Trên khoảng (1; 3): đồ thị có dạng đi xuống từ trái sang phải nên hàm số này nghịch biến trên khoảng (1; 3).

+) Trên khoảng (3; 7): đồ thị có dạng đi lên từ trái sang phải nên hàm số này đồng biến trên khoảng (3; 7).

b) Xét hàm số \(y = 5{x^2}\) trên khoảng (2; 5).

Lấy \({x_1},{x_2} \in (2;5)\) là hai số tùy ý sao cho \({x_1} < {x_2}\).

Do \({x_1},{x_2} \in (2;5)\) và \({x_1} < {x_2}\) nên \(0 < {x_1} < {x_2}\), suy ra \({x_1}^2 < {x_2}^2\) hay \(5{x_1}^2 < 5{x_2}^2\)

Từ đây suy ra \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến (tăng) trên khoảng (2; 5).

Bình luận (1)
PB
Xem chi tiết
CT
17 tháng 2 2018 lúc 2:32

TXĐ: R \ {-1}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho đồng biến trên các khoảng (− ∞ ; −1 − 6 ), (−1 +  6 ; + ∞ ) và nghịch biến trên các khoảng (−1 −  6 ; −1),(−1; −1 +  6 )

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2017 lúc 9:37

- Điều kiện đồng biến, nghịch biến của hàm số:

Cho hàm số y = f(x) có đạo hàm trên khoảng K.

+ f(x) đồng biến (tăng) trên K nếu f’(x) > 0 với ∀ x ∈ K.

+ f(x) nghịch biến (giảm) trên K nếu f’(x) < 0 với ∀ x ∈ K.

- Xét hàm số

 

 

+ Hàm số đồng biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

+ Hàm số nghịch biến

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số đồng biến trên Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

nghịch biến trên các khoảng Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 và (1; +∞)

- Xét hàm số Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12

Ta có: D = R \ {1}

Giải bài 1 trang 45 sgk Giải tích 12 | Để học tốt Toán 12 ∀ x ∈ D.

⇒ Hàm số nghịch biến trên từng khoảng (-∞; 1) và (1; +∞).

Bình luận (0)
H24
Xem chi tiết
NT
12 tháng 8 2023 lúc 20:08

a: y'=3x^2-3*2x=3x^2-6x=3x(x-2)

y'>0 khi x(x-2)>0

=>x>2 hoặc x<0

=>Khi x>2 hoặc x<0 thì hàm số đồng biến

y'<0 khi x(x-2)<0

=>0<x<2

=>Khi 0<x<2 thì hàm số nghịch biến

b: y'=-3x^2+3

y'>0 khi -3x^2+3>0

=>-3x^2>-3

=>x^2<1

=>-1<x<1

Khi -1<x<1 thì hàm số đồng biến

y'<0 khi x^2>1

=>x>1 hoặc x<-1

Vậy: Khi x>1 hoặc x<-1 thì hàm số nghịch biến

Bình luận (0)
HL
Xem chi tiết
PB
Xem chi tiết
CT
1 tháng 9 2019 lúc 12:42

TXĐ: R \ {-3; 3}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' < 0 trên các khoảng (- ∞ ; - 3), (-3; 3), (3; + ∞ ) nên hàm số đã cho nghịch biến trên các khoảng đó.

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 10 2018 lúc 15:34

TXĐ: R \ {0}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho đồng biến trên các khoảng (-; -2), (2; +) và nghịch biến trên các khoảng (-2; 0), (0; 2)

Bình luận (0)