Những câu hỏi liên quan
PH
Xem chi tiết
VN
Xem chi tiết
EC
17 tháng 8 2018 lúc 10:33

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

Bình luận (0)
TP
17 tháng 8 2018 lúc 10:35

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

Bình luận (0)
VN
17 tháng 8 2018 lúc 10:36

vậy con bài 2 thì sao hả bạn

Bình luận (0)
LP
Xem chi tiết
NA
13 tháng 5 2019 lúc 20:44

\(n^3-13n=n\left(n^2-1\right)-12n.\)

                   \(=n\left(n-1\right)\left(n-2\right)-12n\)

Vậy chia hết cho 6 vì 

      n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6

     12n chia hết cho 6

Bình luận (0)
TT
Xem chi tiết
H24
3 tháng 11 2015 lúc 15:49

Toán chứng minh đúng không

Bình luận (0)
DN
Xem chi tiết
DA
Xem chi tiết
DA
Xem chi tiết
PD
24 tháng 1 2021 lúc 15:18

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
DC
Xem chi tiết
NH
13 tháng 2 2017 lúc 22:02

1)[n-6-n+1]chia hết cho   n  -1

suy ra -5 chia hết cho n-1

đến đây tự giải nhé

các phần sau tương tự 

nhớ bấm đúng cho mình nha

Bình luận (0)
DC
13 tháng 2 2017 lúc 22:06

bạn ơi nk chưa hiểu rõ 

hay kết bạn rùi giải rõ giùm mk nha

cảm ơn bạn rất nhiều

Bình luận (0)
VH
Xem chi tiết
NL
8 tháng 12 2020 lúc 13:23

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

Bình luận (0)
 Khách vãng lai đã xóa