n mũ 2 + 5 chia hết cho n + 1
n mũ 2+n+1 chia hết cho n+1
n mũ 2 -n+2 chia hết cho n-1
n mũ 2 +5 chia hết cho n-1
n mũ 2+7chia hết cho+1
n mũ 2-3 nhân n +4 chia hết chon-2
a. n+3 chia hết cho n+1
b. 2n+7 chia hết cho n-3
c. 2n+9 chia hết cho n-3
d. 3n-1 chia hết cho 3-2n
bài 2
a.A=1+4+4 mũ 2+...+4 mũ 59 chia hết cho 5,21,85
b.B=5+5 mũ 3 +5 mũ 5 +...+5 mũ 203 chia hết cho 31
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
CMR
n mũ 3-13n chia hết cho 6
n mũ 3+3n mũ 2+2n chia hết cho 6
n mũ 5-n chia hết cho 5
n lớn hơn 3 lớn hơn n nguyên tố
CM [n mũ 2-1] chia hết cho 24
n*[n+2]*25n mũ 2 chia hết cho 24
\(n^3-13n=n\left(n^2-1\right)-12n.\)
\(=n\left(n-1\right)\left(n-2\right)-12n\)
Vậy chia hết cho 6 vì
n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6
12n chia hết cho 6
a,5 mũ n-1 chia hết cho 4
b, n mũ 2+n+n+1 không chia hết cho 4
c, 10 mũ n -1 chia hết cho 9
d, 10 mũ n +8 chia hết cho 9
a) (n+3) . (n+6) là số chẵn
b) n .(n+1) .(n+5)chia hết cho 3
c)n mũ 2 +n+1 ko chia hết cho 5
d) n mũ 2 +n+1 ko chia hết cho 4
e) 5 mũ n-1 chia hết cho 4
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
a) Tìm n thuộc N để n mũ 10 + 1 chia hết cho 10
b) Tìm n thuộc N để n mũ 2 + n + 2 chia hết cho 5
1) n-6 chia hết cho n-1
2) 3.n+2 chia hết cho n-1
3) 3.n+24 chia hết cho n-4
4) n mũ 2+5 chia hết cho n+1
1)[n-6-n+1]chia hết cho n -1
suy ra -5 chia hết cho n-1
đến đây tự giải nhé
các phần sau tương tự
nhớ bấm đúng cho mình nha
bạn ơi nk chưa hiểu rõ
hay kết bạn rùi giải rõ giùm mk nha
cảm ơn bạn rất nhiều
Bài 1: Cho A=3 + 3 mũ 2 + 3 mũ 3 + ... +3 mũ 2010.
a, Tìm c/s tận cùng của A.
b, Chứng tỏ 2A+ 3 là 1 lũy thừa của 3.
c,Tìm x thuộc N biết: 2A-3=3 mũ x.
d, CMR A chia hết cho 13.
Bài 2: Chứng minh rằng:
a, 942 mũ 60 - 351 mũ 37 chia hêt cho 5.
b ( n + 2009) . ( n+ 2010) chia hết cho 2 với mọi STN n.
Bài 4: Tìm n thuộc N biết:
a, ( n + 9) chia hết cho ( n + 5)
b, 2 mũ n - 3 hết mũ - 2 mũ n = 448
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3