Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = mx + 2 2 x + m luôn đồng biến trên từng khoảng xác định của nó. Ta có kết quả:
A. m < - 2 hoặc m > 2
B. m = 2
C. -2 < m < 2
D. m = -2
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x^2-mx-2m^2}{x-2}\) có tiệm cận đứng .
Hàm có tiệm cận đứng khi và chỉ khi \(x^2-mx-2m^2=0\) vô nghiệm hoặc không có nghiệm \(x=2\)
\(\Rightarrow\left[{}\begin{matrix}\Delta=m^2+8m^2< 0\\4-2m-2m^2\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\end{matrix}\right.\)
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = 2 x 3 - 2 + m x + m cắt trục hoành tại 3 điểm phân biệt
A. m > - 1 2
B. m > - 1 2 , m ≠ 4
C. m > 1 2
D. m ≤ 1 2
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x + 4 x + m giảm trên khoảng ( - ∞ ; 1 ) ?
A. -2<m<2
B. - 2 ≤ m ≤ - 1
C. - 2 < m ≤ - 1
D. - 2 ≤ m ≤ 2
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x + 4 x + m giảm trên khoảng - ∞ ; 1
A. - 2 ≤ m ≤ 2
B. - 2 < m < 2
C. - 2 ≤ m ≤ - 1
D. - 2 < m ≤ - 1
Chọn đáp án D
.
Ta có y ' = m 2 - 4 x + m 2 .
Hàm số luôn đơn điệu trên từng khoảng - ∞ ; - m và - m ; + ∞ .
Hàm số giảm trên khoảng - ∞ ; 1 tức là hàm số nghịch biến trên khoảng - ∞ ; 1 .
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x + 4 x + m giảm trên khoảng (-∞;1)?
A. -2≤ m ≤ 2
B. -2< m < 2
C. -2≤ m ≤ -1
D. -2< m ≤ -1
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x + 4 x + m nghịch biến trên khoảng ( - ∞ ; 1 ) ?
A. - 2 < m ≤ - 1
B. - 2 ≤ m ≤ - 1
C. - 2 ≤ m ≤ 2
D. - 2 < m < 2
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x − 4 x − m đồng biến trên khoảng 1 ; + ∞
A. m ∈ − 2 ; 2
B. m ∈ 0 ; 2 .
C. m ∈ − 2 ; 0 .
D. m ∈ − 2 ; 1
Đáp án D
Điều kiện: x ≠ m .
Đạo hàm y ' = − m 2 + 4 x − m 2 ;
Hàm số đồng biến trên khoảng 1 ; + ∞ ⇔ y ' > 0, ∀ x ∈ 1 ; + ∞ x ≠ m
⇔ − m 2 + 4 > 0, ∀ x ∈ 1 ; + ∞ x ≠ m ⇔ − 2 < m < 2 m ∉ 1 ; + ∞ ⇔ m ∈ − 2 ; 1