CMR: A(n)=3n + 63 chia hết cho 72 ( với n chẵn, n thuộc N, n lớn hơn hoặc bằng 2 )
CMR:
3n+63 chia hết cho 72 (n thuộc N,n lớn hơn hoặc bằng 2,n chẵn)
CMR:A(n)=3n+63 chia hết cho 72 với N chẵn n thuộc N ; n lớn hơn hoặc bằng 2
CMR: A(n)=3n+63 chia hết cho 72 với n chẵn n e N, n lớn hơn hoặc bằng 2
pls, help me.
Ta có:
+) \(A\left(n\right)=3^n+63⋮9\) với n > = 2
+) Vì n chẵn nên đặt n = 2k và k nguyên dương
\(A\left(n\right)=3^n+63=3^{2k}-1+64\)
Vì \(3^{2k}-1=9^k-1⋮\left(9-1\right)\Rightarrow3^{2k}-1⋮8\) và 64 chia hết cho 8
=> \(A\left(n\right)=3^n+63⋮8\)
Lại có: ( 8; 9) = 1 và 8.9 = 72
=> \(A\left(n\right)⋮72\) với n số tự nhiên chẵn và lớn hơn hoặc bằng 2.
Chứng minh rằng:
a)213^6.197-213^7.33 chia hết cho 8
b)2^54.54^24.2^10 chia hết cho 72^63
c)10^n chia hết cho 45 dư 10 với mọi n lớn hơn 1 hoặc bằng 1; n thuộc N
Chứng tỏ rằng ,các số có dạng :
a, A=22n - 1 chia hết cho 5 ( n thuộc N ,n lớn hơn hoặc bằng 2)
b, B=24n +4 chia hết cho10 ( n thuộc N , n lớn hơn hoặc bằng 1)
c, H=92n +3 chia hết cho 2 ( n thuộc N , n lớn hơn hoặc bằng 1 )
Tìm n thuộc N biết
a) 3n+2 chia hết cho n-1 (n lớn hơn 1)
b) n2+3 chia hết cho n2-2
c) n2+2n+7 chia hết cho n+2 (n lớn hơn hoặc bằng 2)
3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }
Tìm n thuộc N
a, n+3 chia hết cho n
b,35 - 12n chia hết cho n ( n < 3)
c, 16 - 3n chia hết cho n + 4 ( n < 6 )
d,5n + 2 chia hết cho 9 - 2n ( n < 5 )
e , 6n + 9 chia hết cho 4n - 1 ( n lớn hơn hoặc bằng 1 )
a)n+3\(⋮\)n b)35-12n\(⋮\)n
n\(⋮\)n 12n\(⋮\)n
n+3-n\(⋮\)n 35-12n-12n\(⋮\)n
3\(⋮\)n 35\(⋮\)n
\(\Rightarrow\)n={1;3} vì n<3 nên :
\(\Rightarrow\)n={1}
Làm tượng tự với các câu sau
Có n + 3 chia hết cho n
=> n chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư(3)
n = { 1 ; 3}