Khai triển 1 + 2 x + 3 x 10 = a 0 + a 1 x + a 2 x 2 + ... + a 20 x 20 . Tính tổng a 0 + 2 a 1 + 4 a 2 + ... + 2 20 a 20
A. S = 15 10
B. S = 17 10
C. S = 7 10
D. S = 7 20
1. Tìm hệ số của số hạng \(x^4\) trong khai triển \(\left(x-3\right)^9\)
2. Tìm hệ số của số hạng chứa \(x^{12}y^{13}\) trong khai triển \(\left(2x+3y\right)^{25}\)
3. Tìm hệ số của số hạng chứa \(x^4\) trong khai triển \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}\)
4. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x^2-\dfrac{1}{x}\right)^6\)
5. Tìm hệ số của số hạng không chứa x trong khai triển \(\left(x+\dfrac{1}{x^4}\right)^{10}\)
biết hệ số hạn thứ 3 trong khai triển ( x-1/x)^2 là y 66 tìm số hạn không chứa x trong khai triển đó
Khai triển và thu gọn:
Câu 1. 2x (4x – 1) – x (8x + 1) – 3(x – 2)
Câu 2. (x – 2)(x – 3) – (x + 1)2
15. Số hạng chính giữa trong khai triển (3x + 2y)^4 là?
18. Tìm hệ số của x^7 trong khai triển : h(x)= x(2 + 3x)^9 là?
19. Tìm hệ số của x^7 trong khai triển g(x)= (1+x)^7 + (1-x)^8 + (2+x)^9 là?
15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)
18/ \(x.x^k=x^7\Rightarrow k=6\)
\(C^6_9.3^6.2^3=489888\)
19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)
Biết tổng các hệ số của ba số hạng đầu trong khai triển \(\left(x^3+\dfrac{1}{x^2}\right)^n\) bằng 11. Tìm hệ số của \(x^7\) trong khai triển đó.
\(C_n^0+C_n^1+C_n^2=11\)
\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)
\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)
\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)
\(5k-8=7\Rightarrow k=3\)
Hệ số: \(C_4^3=4\)
Khai triển tích 3(x-1)^2-(x+1)^3 Lm từng các một nha
3(x - 1)2 - (x + 1)3
= 3(x2 - 2x + 1) - (x3 + 2x2 + 2x + 1)
= 3x2 - 6x + 3 - x3 - 2x2 - 2x - 1
= 3x2 - 2x2 - 6x - 2x - x3 + 3 - 1
= x2 - 8x - x3 + 2
Khai triển tích 3(x-1)^2-(x+1)^2 Lm từng các một nha
\(3\left(x-1\right)^2-\left(x+1\right)^2\)
\(=3x^2-6x+3-x^2-2x-1\)
\(=2x^2-8x+2\)
3(x - 1)2 - (x + 1)2
= 3(x2 - 2x + 1) - (x2 + 2x + 1) (Dùng hằng đẳng thức)
= 3x2 - 6x + 3 - x2 - 2x - 1 (Dùng nhân đơn thức với đa thức và đưa hạng tử ra khỏi ngoặc)
= 3x2 - x2 - 6x - 2x - 1 + 3 (Tính tổng các hạng tử cùng đơn vị)
= 2x2 - 8x + 2 (Kết quả)
Câu 5. Khai triển và thu gọn:
a) (x + 1)2 – (x – 2)2
b) (x – 3)(x – 1) – (2x – 1)2
c) (x + 3)2 - 2(x + 3)(1 – x) + (1 - x)2
a)(x + 1)2 – (x – 2)2
= (x+1-x+2)(x+1+x-2)
= 3(2x-1)
b)(x – 3)(x – 1) – (2x – 1)2
= x2-4x+3-4x2+4x-1
= -(3x2-2)
c)(x + 3)2 - 2(x + 3)(1 – x) + (1 - x)2
= [(x+3)-(1-x)]2
=(2x-2)2=4(x-1)2
1: hệ số của số hang chứa x8 trong khai triển \(\left(\frac{1}{x^4}+\sqrt[2]{x^5}\right)^{12}\)
2: hệ số của số hang chứa x16 trong khai triển \(\left[1-x^2\left(1-x^2\right)\right]^{16}\)
3: hệ số của số hạng chứa x5 trong khai triển \(x\left(1-2x\right)^5+x^2\left(1+3x\right)^{10}\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
Trong các khai triển dưới đây, khai triển nào là đúng?
A. (x-2)3 = x3 - 6x2 +12x-8
B. (x-2)3 = x3 - 2x2 + 4x -8
C. (x-2)3 = 3x3 - 6x2 + 12x -24
D. (x-2)3 = x3 - 6x2 + 12x + 8
A. (x-2)3 = x3 - 6x2 +12x - 8 (hằng đẳng thức)