Những câu hỏi liên quan
NV
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
H24
6 tháng 12 2021 lúc 16:43

      Giải:

Bài 1: lần lượt thay các giá trị của x, ta có:

_Y=f(-1)= -5.(-1)-1=4

_Y=f(0)= -5.0-1=1

_Y=f(1)= -5.1-1=-6

_Y=f(1/2)= -5.1/2-1=-7/2

 

Bình luận (1)
NT
6 tháng 12 2021 lúc 23:11

Bài 2: 

a: f(-2)=7

f(-1)=5

f(0)=3

Bình luận (1)
VL
Xem chi tiết
H24
14 tháng 3 2020 lúc 15:52

ffffff

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
22 tháng 7 2018 lúc 12:24

Chọn D.

Ta có 

Vậy F(x)= 1 2 x 2 + x + 1

Bình luận (0)
AP
Xem chi tiết
AH
8 tháng 10 2021 lúc 7:52

Ở góc trái khung soạn thảo có hỗ trợ viết công thức toán (biểu tượng $\sum$). Bạn viết lại đề bằng cách này để được hỗ trợ tốt hơn.

 

Bình luận (0)
NK
Xem chi tiết
NT
19 tháng 1 2024 lúc 19:22

a: loading...

 

b: \(f\left(2\right)=\dfrac{1}{2}\cdot2=1\)

\(f\left(1\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)

\(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\)

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)

\(f\left(0\right)=\dfrac{1}{2}\cdot0=0\)

c: f(x)=2

=>\(\dfrac{1}{2}x=2\)

=>x=2*2=4

f(x)=1

=>\(\dfrac{1}{2}x=1\)

=>\(x=1:\dfrac{1}{2}=2\)

f(x)=-1

=>\(\dfrac{1}{2}x=-1\)

=>\(x=-1\cdot2=-2\)

d: \(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\ne\dfrac{1}{2}=y_A\)

=>A(-1;1/2) không thuộc đồ thị hàm số y=1/2x

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}=y_B\)

=>\(B\left(-1;-\dfrac{1}{2}\right)\) thuộc đồ thị hàm số y=1/2x

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 12 2017 lúc 8:19

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2018 lúc 11:06

Bình luận (0)
H24
Xem chi tiết
NT
21 tháng 10 2023 lúc 10:06

2: ĐKXĐ: x<>1

\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)

\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

f'(x)=0

=>x^2-2x=0

=>x(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

1:

\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)

=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)

f'(x)=0

=>\(\left(x-2\sqrt{2}\right)^2=0\)

=>\(x-2\sqrt{2}=0\)

=>\(x=2\sqrt{2}\)

Bình luận (0)