cho a^2/a+b +b^2/b+c +c^2/c+a=2021 tính M=b^2/a+b+c^2/b+c +a^2/c+a
Ta có a + b + c = 6
=> (a + b + c)2 = 36
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 36
=> 12 + 2ab + 2bc + 2ca = 36
=> 2ab + 2bc + 2ca = 24
=> ab + bc + ca = 12
Khi đó a2 + b2 + c2 = ab + bc + ca (= 12)
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)
=> a = b = c = 2
Khi đó A = (2 - 3)2021 + (2 - 3)2021 + (2 - 3)2021
= -1 + (-1) + (-1)
= -3
Cho a,b,c,d là các số thực dương thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2.Tính a^2021 + b^2021 = c^2021+d^2021
Cho a,b,c thõa mãn : a^2 + b^2 +c^2 - ab -bc- ca = 0. Tính: P = (a-b)^2020 + (b-c)^2021 + (c-a)^2022
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)
Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)
=> a = b = c
\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)
\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)
= 0
1) Tính giá trị của biểu thức
a) (a+b+c)^2+(a-b-c)^2 tại b=1,c=-2,a=2021
b) (a+b+c)^2+(a+b-c)^2-2.(a+b)^2 tại c=-10
c) (a+b+c)^2+(-a+b+c)^2+(a-b+c)^2+(a+b-c)^2 với a^2+b^2+c^2=10
Cho a+b+c=6 và a2+b2+c2=ab+bc+ca .Tính giá trị biểu thức C=(1-a)2021+(b-1)2021+(c-2)2021
Ta có
\(a+b+c=6\)
\(\Leftrightarrow\left(a+b+c\right)^2=36\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=36\)
Mà \(a^2+b^2+c^2=ab+bc+ca\)
Khi đó ta có
\(3\left(ab+bc+ca\right)=36\)
\(\Leftrightarrow ab+bc+ca=12\)
\(\Leftrightarrow\hept{\begin{cases}2ab+2bc+2ca=24\\2a^2+2b^2+2c^2=24\end{cases}}\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\Leftrightarrow a=b=c=\frac{6}{3}=2\) ( 1 )
Thay (1) vào C ta có
\(C=\left(1-2\right)^{2021}+\left(2-1\right)^{2021}+\left(2-2\right)^{2021}\)
\(=-1+1+0=0\)
Vậy ......................
Cho a,b,c > 0 và b^2= ac, c^2= ab. Tính B= a^4043/ b^2021 . c^2022
giúp tôi vs, tôi đang cần gấp
CMR: Nếu: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2021}+y^{2021}+z^{2021}}{a^{2021}+b^{2021}+c^{2021}}=\dfrac{x^{2021}}{a^{2021}}+\dfrac{y^{2021}}{b^{2021}}+\dfrac{z^{2021}}{c^{2021}}\)
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
Cho a/b = b/c = c/ d và a+b+c khác 0
tính a^3 . b ^2 , c ^2021 / a^2026
Cho b^2=a*c b+c khác 0(a+b)^2021/(b+c)^2021=a^2021+b^2021/b^2021+c^2021