Những câu hỏi liên quan
AV
Xem chi tiết
H24
20 tháng 7 2019 lúc 12:08

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

Bình luận (0)
H24
20 tháng 7 2019 lúc 12:15

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

Bình luận (0)
H24
20 tháng 7 2019 lúc 12:15

bài 3 min hay max ?

Bình luận (0)
PA
Xem chi tiết
LF
25 tháng 8 2016 lúc 17:07

đề thiếu r`

Bình luận (1)
NY
Xem chi tiết
LD
4 tháng 5 2019 lúc 11:51

1.

Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)

Dấu "=" khi a = b.

Áp dụng:

\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)

\(=4+2+5=11\)

Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)

Bình luận (0)
LD
4 tháng 5 2019 lúc 12:03

\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)

\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)

\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)

\(\Delta=P^2-4\left(1-P\right)^2\)

\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)

Để P có GTNN và GTLN thì phương trình (*) có nghiệm

\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)

\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)

\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)

\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\le P\le2\)

Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)

Bình luận (0)
LD
4 tháng 5 2019 lúc 12:20

\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Leftrightarrow\left(x+y\right)^2+2\cdot\left(x+y\right)\cdot\frac{7}{2}+\frac{49}{4}-\frac{9}{4}=-y^2\)

\(\Leftrightarrow\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}=-y^2\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)=-y^2\le0\)

\(x+y+2< x+y+5\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+2\le0\\x+y+5\ge0\end{matrix}\right.\Leftrightarrow-5\le x+y\le-2\)

\(\Leftrightarrow-4\le x+y+1\le-1\)

Vậy: \(Min=-4\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.;Max=-1\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

Bình luận (0)
HD
Xem chi tiết
TI
Xem chi tiết
PH
15 tháng 4 2018 lúc 23:07

x/y+y/x=x^2+y^2/xy​                       sử dụng bdt cosi =>x^2+y^2/xy+xy/x^2+y^2>=1

Bình luận (0)
H24
1 tháng 12 2019 lúc 20:40

ta có: \(M=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{x^2+y^2}{xy}\cdot\frac{xy}{x^2+y^2}}=2\cdot\sqrt{1}=2\cdot1=2.\)

(Ở đây mình áp dụng BĐT Cauchy: \(a+b\ge2\sqrt{ab}\)nhé!)

Học tốt! ^3^

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
H24
1 tháng 9 2019 lúc 14:41

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Bình luận (0)
PA
Xem chi tiết
DA
Xem chi tiết
NH
Xem chi tiết
AN
2 tháng 12 2016 lúc 6:26

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

Bình luận (0)
NH
1 tháng 12 2016 lúc 22:57

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

Bình luận (0)
H24
2 tháng 12 2016 lúc 6:37

dong y quan diem @aliba

bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"

(da khong biet lai con luoi dang cau hoi nua)

Bình luận (0)