Những câu hỏi liên quan
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)
LB
Xem chi tiết
TH
29 tháng 12 2015 lúc 16:02

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

Bình luận (0)
HM
Xem chi tiết
NH
23 tháng 12 2022 lúc 10:55

loading...

Bình luận (0)
NH
Xem chi tiết
TN
27 tháng 10 2023 lúc 20:22

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

Bình luận (0)
NA
Xem chi tiết
AH
23 tháng 7 2021 lúc 9:46

Lời giải:

Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$

$\Rightarrow d=1$

Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.

 

Bình luận (0)
NT
Xem chi tiết
NQ
22 tháng 10 2021 lúc 19:14

ta có 2n+2 và 2n+3 là hai số tự nhiên liên tiếp và lớn hơn 1

thế nên hai số này nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
PH
13 tháng 9 2018 lúc 12:05

Gọi d là ước chung của 2n+1 và 3n+1

\(\Rightarrow2n+1⋮d,3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

Bình luận (0)
NV
31 tháng 12 2018 lúc 8:46

Gọi d là ước chung của 2n+1 và 3n+1

⇒2n+1⋮d,3n+1⋮d

⇒3(2n+1)−2(3n+1)⋮d

⇒6n+3−6n−2⋮d

⇒1⋮d⇒d=1.

Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

Bình luận (0)
PL
Xem chi tiết
H24
21 tháng 11 2018 lúc 20:28

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

Bình luận (0)
H24
21 tháng 11 2018 lúc 20:34

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Bình luận (0)
PL
21 tháng 11 2018 lúc 20:41

Thank you nha!

Bình luận (0)
NL
Xem chi tiết
HC
13 tháng 12 2016 lúc 10:59

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

Bình luận (0)